Characterizing Delta Aquifers and Streams

Presented by Wade H. Kress
US Geological Survey - Lower Mississippi Gulf WSC
Mississippi Alluvial Plain Water Availability Project

This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government may be held liable for any damages resulting from the authorized or unauthorized use of the information.
Project Components

- Groundwater levels
- Water budget
- Uncertainty and data worth
- Hydrogeologic Framework
Hydrogeologic Framework

- Framework
 - Recharge
 - Surface-water/groundwater exchange
 - Aquifer delineation

- Geophysical mapping
 - Borehole geophysical logs
 - Surface geophysical mapping
 - Ground-based
 - Waterborne
 - Airborne
Geophysical Properties

<table>
<thead>
<tr>
<th>Gamma-Ray</th>
<th>Resistivity</th>
<th>Cuttings</th>
<th>Geology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Clay</td>
<td>MRVA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sand</td>
<td>Mississippi River Valley Alluvium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coarse Sand</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Large Gravel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silty Clay</td>
<td>SPRT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sand</td>
<td>Sparta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clay</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sand</td>
<td>ZLPH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clay</td>
<td>VINON</td>
</tr>
</tbody>
</table>

Jim Hoffman, MDEQ, written communication, 2016

Preliminary information—Subject to revision. Not for citation or distribution.
Hydraulic Properties

Permeability, in cm/sec

Grain Size, in mm

Clay ↔ Sand

Krinitzky and Wire, 1964
Surface Geophysical Mapping

- **Ground-based**
 - Shallow surveys ~30 ft below land surface
 - Tallahatchie River – 19.3 mi
 - Central Delta – 22.5 mi
 - Deep surveys ~300-600 ft below land surface
 - Tallahatchie River – 2 mi
 - Central Delta – 64 mi

- **Waterborne**
 - River Surveys ~60 ft below water surface
 - Tallahatchie – 37 mi
 - Quiver – 31 mi
 - Sunflower – 43 mi
Surface Geophysical Mapping

- **Ground-based**
 - Shallow surveys ~30 ft below land surface
 - Tallahatchie River – 19.3 mi
 - Central Delta – 22.5 mi
 - **Deep surveys ~300-600 ft below land surface**
 - Tallahatchie River – 2 mi
 - Central Delta – 64 mi

- **Waterborne**
 - River Surveys ~60 ft below water surface
 - Tallahatchie – 37 mi
 - Quiver – 31 mi
 - Sunflower – 43 mi
Surface Geophysical Mapping

- **Ground-based**
 - Shallow surveys ~30 ft below land surface
 - Tallahatchie River – 19.3 mi
 - Central Delta – 22.5 mi
 - Deep surveys ~300-600 ft below land surface
 - Tallahatchie River – 2 mi
 - Central Delta – 64 mi

- **Waterborne**
 - River Surveys ~60 ft below water surface
 - Tallahatchie – 37 mi
 - Quiver – 31 mi
 - Sunflower – 43 mi
Geomorphology from Saucier (1994)
http://lmvmapping.erdc.usace.army.mil/
Sunflower River: Alternating high and low resistivity values

Tallahatchie River: Relatively higher resistivities

Quiver River: Relatively low resistivity values

High resistivity values are displayed as cooler colors and low resistivity values are warmer colors

Waterborne resistivity survey
Shallow ground-based resistivity survey

Lower resistivity values in areas with clay-rich Holocene backswamp deposits (Hb)

Higher resistivity values in areas with sandier Holocene point-bar deposits (Hpm)
Waterborne and shallow ground-based resistivity survey
Pilot Study

- Characterize the aquifer system
- Evaluate potential sources of groundwater recharge
 - Infiltration of precipitation and irrigation water
 - Surface-water/groundwater exchange
- Use geophysical data to develop a high-resolution hydrogeologic framework
Pilot Study

Waterborne resistivity profile
Pilot Study

Waterborne resistivity profile

Shallow ground-based resistivity profiles
Pilot Study

Waterborne resistivity profile

Deep ground-based resistivity profiles
Pilot Study

Waterborne resistivity profile

Shallow ground-based resistivity profiles

Deep ground based resistivity profiles

Preliminary information—Subject to revision.
Not for citation or distribution.
Pilot Study

Deep ground-based resistivity, Profile 1
Deep resistivity profiles provide an image of the entire thickness of the alluvial aquifer as well as the base of the aquifer.
Three-dimensional image resistivity data from pilot study survey.

Low resistivity values in the gridded shallow ground-based survey indicate an area of surficial clays with high clay content.
Three-dimensional image resistivity data from pilot study survey.

Shallow ground-based resistivity shows good correlation to deep resistivity profiles.
Low resistivity values in the streambed indicate an area where surface-water/groundwater exchange could potentially decline.

Relatively higher resistivity values near the streambed indicate an area where surface-water/groundwater exchange could potentially increase.

Aquifer base Clay

Aquifer Sand
Large-Scale Mapping

Ground-based surveys

- Resistivity methods can be used to
 - Map near-surface sands and clays controlling recharge
 - Map the extent and thickness of the alluvial aquifer
 - Determine the degree of stream connectivity with the alluvial aquifer

How do we map the entire aquifer system?
Airborne Surveys
Potential Airborne Geophysical Survey for the MAP
Questions

Contact: Wade Kress wkress@usgs.gov

For more information:
https://www.usgs.gov/water/lowermississippigulf/map

Follow us on Twitter:
@USGS_LMG
References

- Saucier, 1994, Geomorphology and quaternary geologic history of the Lower Mississippi Valley, vol 1. US Army Engineers Waterways Experiment Station, Vicksburg, MS, 398 pp