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Adaptive management is an approach for simultaneously managing and learning about natural resources, by
acknowledging uncertainty and seeking to reduce it through the process ofmanagement itself. Adaptive decision
making can be applied to pressing issues in conservation biology such as species reintroduction, disease and in-
vasive species control, and habitat restoration, as well as to management of natural resources in general. After
briefly outlining a framework and process for adaptive management, we focus on an overview of the key techni-
cal issues related to problem framing and the ability of resource managers to learn from their experience. These
technical issues include the treatment of uncertainty and its propagation over time; nonstationarity in long-term
environmental trends; the applicability of adaptive management across scales; requirements for models and
management alternatives that promote learning; the value of the information produced with adaptive manage-
ment; the challenge tomanagement of uncertainty and surprise; and institutional (social) learning. To accommo-
date these and other challenges that are now coming into focus, the learning-based approach of adaptive
management will need to be adjusted and expanded in the future.
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1. Introduction

Adaptive management, an approach that involves the dual pursuit of
management and learning, has been a part of natural resources manage-
ment for many decades. In natural resources, adaptive management
means learning by doing (managing), and alteringmanagement activities
to reflect new information (learning) (Walters and Holling, 1990). Learn-
ing in adaptive management occurs through the practice of management
itself, with adjustments to decision making as understanding improves.
For many resource management problems, the use of management in
an experimental, learning-oriented context is the best, and may be the
only, way to gain the understanding needed to manage more effectively
(Williams et al., 2007). Formany systems such as ecological communities
or species populations undergoing rapid change, managers often cannot
wait for thorough knowledge. Adaptive management can be used to
move forwardwith a strategy of action that articulates and systematically
reduces the multiple aspects of uncertainty that managers face. Though
there are of course other approaches to management, some of which
may be useful under specific circumstances (Williams et al., 2002), adap-
tivemanagement serves tofill a need for smartmanagement in the face of
uncertainty.

Advances in decision analytic theory andmethodology since Holling's
(1978) and Walters and Hilborn's (1978) early studies of adaptive man-
agement of natural resources have led to a proliferation of applications
in the conservation of animal and plant species over the last decade.
ss article under the CC BY license (ht
There are by now a great many cases in the literature that document
the use of an adaptive approach to resource management. The following
examples are by no means exhaustive, but serve to highlight the range
of real-world applications and issues that can be addressed through adap-
tive decision making. For example, studies have involved threatened and
endangered species, like Mead's milkweed (Asclepias meadii) (Moore
et al., 2011a), red-cockaded woodpeckers (Picoides borealis) (Moore and
Conroy, 2006), red knots (Calidris canutus rufa) (McGowan et al., 2011),
and endemic fishes in the Tallapoosa River (Irwin and Freeman, 2002).
Runge (2011) discussed adaptive management for specific issues such
as species recovery and regulatory listing under the U.S. Endangered Spe-
cies Act. Other studies have focused on particular elements of the decision
process, for example, population modeling in wildlife management
(reviewed by Lahoz-Monfort et al., 2014) and the central role ofmonitor-
ing (Lyons et al., 2010) and science–management partnerships (Moore
et al., 2011b) in managing habitats. Methodological issues are also at
the forefront, such as the role and degree of experimentation in active
adaptive management. For example, Parkes et al. (2006) experimented
with competing models of control of invasive vertebrates in New
Zealand, Runge (2013) examined how optimal decisions could change
over the course of a simulated reintroduction of griffon vultures (Gyps
fulvus), and Rout et al. (2014) considered tradeoffs among prevention,
search, and eradication of an invasive species. McCarthy and
Possingham (2007) demonstrated optimization of decisions with a case
study of native plant revegetation in Australia, and McDonald-Madden
et al. (2010) used this method to develop a framework for accelerated
learning about populations of the Tasmanian devil (Sarcophilus harrisii),
tp://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Dynamic resource system, with changes influenced by fluctuating environmental
conditions and management actions, with uncertainty factors. Partial control limits the
influence of management actions. Environmental variation affects resource system
status and dynamics. Partial observability limits the recognition of system status.
Structural uncertainty limits the ability to characterize system change.
From Williams and Brown (2014).
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a species threatened by an emergent fatal infectious disease. Climate
change is another major theme, and many researchers have focused
on dealing with uncertainties driven by changing climate patterns.
For example, adaptive approaches were outlined by Conroy et al.
(2011) to mitigate impacts on mid-montane bird communities in
the southeastern U.S., by Martin et al. (2011a) to manage fresh
water to benefit Florida manatees (Trichechus manatus latirostris), and
by McDonald-Madden et al. (2011) to determine optimal timing of spe-
cies translocations.

Nearly all definitions of adaptivemanagement emphasize uncertainty,
its integration into a decision making framework, and its reduction
through management itself. We use the definition of adaptive man-
agement given by Williams et al. (2007): “Adaptive management is
a systematic approach for improving resource management by
learning from management outcomes.” Learning and adaptation is
an ongoing process in which learning is used to improve manage-
ment, and management is used to investigate the resource system
(Williams and Brown, 2014). In some cases management interven-
tions can be designed as experimental “treatments.” Nonetheless,
the ultimate focus is management, and learning is valued for its con-
tribution to better management (Walters, 1986). Adaptive manage-
ment is distinguished from more common forms of decision making
like “trial and error,” scenario planning, hedging, and other forms of
non-adaptive management that do not focus on uncertainty and its
reduction (Williams et al., 2007).

In this paper, we provide an overview of emerging technical issues in
adaptive management, bringing together these growing points in its im-
plementation for the first time. Our focus is on the current state of think-
ing about adaptive management and some important issues facing this
approach in the future, rather than on a retrospective of past develop-
ments. A number of technical matters in adaptive decision making have
recently become apparent, not only in various areas of natural resource
management but also in operations research, information theory, systems
analysis, and other fields. We hope that by relating these outstanding is-
sues to the practice of adaptive management, their application in biolog-
ical conservation will be advanced.

We first briefly describe adaptive management processes and their
context, including the treatment of uncertainty and its propagation over
time. We then use this framework and context to develop a series of
emerging issues that we believe pose serious challenges to the approach.
These include nonstationarity of long-term environmental trends; the ap-
plicability of adaptive management across scales; attributes of models
and management alternatives that promote learning; the value of the in-
formation produced with adaptive management; management for resil-
ience and sustainability; and institutional (social) learning. Such issues
can be relevant to adaptive decision making for many natural resources,
including ecological systems, plant and animal species, populations, or
habitats, and in this paper we use the generic term “resource” to refer
to them.

2. Context for adaptive management

Applications of adaptive management typically involve systems char-
acterized by uncertainty and change over time (Fig. 1). Common features
(Williams andBrown, 2014) are: 1) systemchanges in response tofluctu-
ating environmental conditions and management actions; 2) environ-
mental variation that induces stochasticity in biological and ecological
processes, leading to unpredictable system behaviors; 3) periodic and
potentially varying management interventions to influence system
behaviors either directly or indirectly; and 4) limitation of effective
management by uncertainty about the resource system and how it
responds, such that reducing this uncertainty can lead to improved
management. Most applications involve a systematic approach to
management, including problem framing and the use of formal decision
analysis; statistical tools such as Bayesian updating (Lee, 1989), Markov
processes (Puterman, 1994), and stochastic dynamic programming to
optimize decisions (Bertsekas, 1995); and a foundational framework
of tightly integrated sequential elements in a decision process that me-
thodically reduces uncertainty (e.g., Williams et al., 2007).

The fact that management, environmental variation, and resource
status are expressed over time provides an opportunity to improve
management by learning over the course of the management time
frame. A useful notation for this situation denotes the system state at
a particular time t by xt,which may represent key resource elements,
features, and attributes that change over some time frame. The system
is influenced by a conservation actionat, chosen from a set of options
that are available at time t. Resource dynamics can be represented in
discrete time by

xtþ1 ¼ xt þ f xt ; at ; etð Þ; ð1Þ

with the resource change f(xt,at,et) from t to t + 1 influenced by the
resource state xt, the action at, and environmental conditions et at
time t.

A key to adaptive management is the recognition and treatment of
uncertainty. Herewe emphasize four uncertainty factors that affect nat-
ural resources, namely environmental variation, partial controllability,
partial observability, and structural uncertainty (Williams, 2011a).
These uncertainties influence resource management in different ways
and at different points in a resource system (Fig. 1), and in combination
they can restrict our management ability.

2.1. Environmental variation

Environmental conditions can be viewed as external factors that in-
fluence, but are not influenced by, resource conditions and dynamics.
Examples include precipitation patterns, temperature regimes, ambient
light conditions and othermeasures, aswell as extremes in these condi-
tions. Fluctuations in the environment can be treated as if they vary
randomly over time, and interact with landscape changes that co-occur.
It often is useful to include unrecognized landscapeheterogeneity andun-
predictable human impacts on the landscape as a part of “environmental
variation.”

Environmental conditions combine with demographic stochasticity
and other factors to induce random variation in the state transitions in
Eq. (1). These transitions can be conveniently represented by a proba-
bility P(xt+1|xt,at) of transition between successive states, given that
action at is taken at time t. In the following section we primarily use
this formulation to describe the change in resource conditions.



Fig. 2. Two-phase learning in adaptive management. The foundation for adaptive
management is based on an integrated sequence of elements. Technical learning
involves an iterative sequence of decision making, monitoring, and assessment.
Institutional learning involves periodic reconsideration of the planning elements of
adaptive management.
From Williams and Brown (2014).
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2.2. Partial controllability

In many instances the management actions that are actually imple-
mented are not fully determined by the management decisions that are
made. Partial controllability refers to the difference between an effect
that is intended and the effect that actually occurs. The latter can be char-
acterized conveniently in terms of a distribution of actions that assigns
probabilities of their occurrence over a range of potential consequences.

Here we consider a target action at in Eq. (1) that is realized only par-
tially, with random variation in the action actually taken. This additional
source of stochasticity can be, and often is, combinedwith environmental
variation in the probability structure P(xt+1|xt,at) of the transition
models. Partial controllability typically increases with geographic scale
and ecological complexity, but tends to be less important in localized,
smaller-scale projects for which random variation is limited and control
can be exercised more directly.

2.3. Partial observability

Partial observability expresses the inability to observe completely
the resource system that is being managed. For example, only a part
of the area where a fish population occurs can be monitored, and
individuals (e.g., plants and animals) often escape detection even
in areas that are intensively monitored. As a result, observations
are associated with, but not the same as, actual system states. Partial
observability obscures the resource status on which effective
management depends, which reduces management effectiveness
even if environmental variation is minimal and management actions
are precisely controlled.

There are several ways partial observability can be addressed. One is
to estimate resource status with field data, and then treat the estimate
as if it accurately represents resource conditions. Another is to state
the uncertainty about resource status explicitly with probabilities for
possible resource states, and incorporate them directly into the
decision-making process (Williams, 2009). Here we represent partial
observability with a distribution bt of resource states at each time,
where bt(x) denotes the probability or “belief” that the resource
state is x at time t. This distribution, which often is referred to as a
belief state (Kaelbling et al., 1998), changes over time as actions
are taken, the resource responds, and monitoring data are collected
and used to update resource status (Regan et al., 2011; Chadès et al.,
2008, 2011).

2.4. Structural uncertainty

Structural uncertainty denotes a lack of understanding (or lack of
agreement) about the forms and functions of the processes that control
resource dynamics. Differing views about how natural processes work
and how they respond to management can be framed as hypotheses,
which in turn can be embedded in models and used to make testable
predictions. The models can be described as above by different transi-
tion probability models Pk(xt+1|xt,at), where the subscript k designates
one of several models representing different hypotheses. Structural
uncertainty then focuses on the degrees of confidence about the
models (and their embedded hypotheses) in representing resource
dynamics. The gradual identification of the appropriate model over
time is described here as technical learning, and it is a key to
improved management.

Structural uncertainty is conveniently measured by a distribution qt
of weights that express relative confidence in themodels, with element
qt(k) denoting the degree of confidence in model k to represent the
resource. The distribution qt is often referred to as a model state, and it
changes over time as resource conditions fluctuate and different
management actions are taken. A common mathematical approach for
updating the confidence weights is based on Bayes' theorem, which
combines the confidence values qt(k) and resource status xt+1 from
monitoring data to generate updated confidence values iteratively
over time (Lee, 1989):

qtþ1 kð Þ ¼ qt kð ÞPk xtþ1jxt ; atð Þ
P xtþ1jxt ; at ; qtð Þ

with

P xtþ1jxt ; at ; qtð Þ ¼
X

k
qt kð ÞPk xtþ1jxt ; atð Þ:

Confidence increases for models that make accurate forecasts of
resource status, and confidence declines for models that do not make
accurate forecasts. Unlike environmental variation (and in some cases
partial controllability), which are effectively uncontrolled, structural
uncertainty can be reduced with management that targets learning.
We note that approaches such as experimentation with analysis of var-
iance statistics, ad hoc metrics that measure distances between and
among models (Williams et al., 2002), and other informal procedures
also could be used to update model confidence values.

3. Adaptive decision making

A framework for adaptive decision making can be characterized as a
two-phase process, which we briefly recapitulate from Williams and
Brown (2014) (Fig. 2). A deliberative phase involves the framing of
the resource problem in terms of stakeholders, objectives, management
alternatives,models (includingmetrics for the confidence one places on
them), and monitoring protocols. An iterative phase uses these
elements in an ongoing cycle of technical learning about system
structure and function, and resource management based on what
is learned. Finally, institutional learning (a form of social learning
[Pahl-Wostl, 2009]) about the decision process is obtained by peri-
odically interrupting the iterative cycle of technical learning to re-
consider project objectives, management alternatives, stakeholder
engagement, and other elements of the deliberative phase (Fig. 2).
The institutional learning cycle complements, but differs from, the
cycle of technical learning.

3.1. Value functions

An assessment of decision options ultimately requires a means
to project and value decision outcomes. To be useful in guiding strategy,
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objectives must be represented by one or more measureable attributes
that can be used to evaluate the consequences of management actions
(Keeney, 1992; Arvai et al., 2001). A notation for such a valuation recog-
nizes that actions at any point in time have immediate or short-term
effects as well as longer-term effects (Fig. 1). Longer-term effects are
represented with the transition models. Short-term effects are often
described in terms of the immediate costs and returns associated with
an action, and are represented here by time-specific utilities U(at |xt)
(representing immediate rewards net of any relevant costs) corre-
sponding to a particular action at and resource state xt at time t. If we
assume the resource system is fully known and observed, a valuation
of management strategy is given in terms of the aggregation of utilities
into a value function (Williams and Johnson, 2013):

V At jxtð Þ ¼ E
XT
τ¼t

U aτ jxτð Þjxt
" #

: ð2Þ

Here At represents a strategy with state-specific actions over the time
frame from t to some terminal time T. Because of the randomness in sys-
tem responses as captured by the transition probabilities P(xt+1|xt,at),

the aggregation ∑
T

τ¼t
Uðaτ jxτÞjxt of utilities over time is also random. A

natural way to account for the randomness is to average the value of
the aggregated utilities, and hence we use the expected value, where
the expectation reflects the transition probability structure. The objective
in Eq. (2) can be used to compare potential strategies and select onewith
high value for any initial resource state.

Several variants of valuation are possible. One extension allows
structural uncertainty, which can be captured with different transition
models Pk(xt+1|xt,at) (and possibly different utilities Uk(at |xt)). Struc-
tural uncertainty is included in the value function as:

V At jxt ; qtð Þ ¼
X

k
qt kð Þ E

XT
τ¼t

Uk aτ jxτð Þjxt
" #( )

: ð3Þ

Eq. (3) is essentially an averaging of model-specific expected values
from Eq. (2), based on model state qt. The incorporation of structural
uncertainty into decision making transforms the decision framework
into a Markovian belief process (Williams, 2011b), thereby increasing
substantially the complexity of finding optimal strategies. An example
of the use of Markovian belief processes in biological conservation
is provided by Runge's (2013) study of optimal decisions for species
reintroduction.

Another extension involves the inclusion of partial observability, in
which valuation as in Eq. (2) is averaged over the possible resource
states at each time:

V At jbtð Þ ¼ E
XT
τ¼t

X
x
bτ xð ÞUk aτ jxð Þ

n o���xt ; bt
" #

: ð4Þ

Eq. (4) represents the averaging of expected values in Eq. (2), based
on the belief state bt. The inclusion of partial observability again produces
a Markovian belief process (Kaelbling et al., 1998), with commensurate
challenges in finding optimal strategies.

3.2. Robust decision making

The valuation functions for structural uncertainty (Eq. (3)) and
partial observability (Eq. (4)) rely on probability structures on which
to base the averaging of utilities. But sometimes uncertainty is so severe
that it cannot be described probabilistically, so it is not possible to use
probability averaging to compute an expected aggregate utility. A candi-
date approach for severe uncertainty is robust decision making, which
focuses not on average aggregate utilities but rather on the production
of values that will satisfy a minimum performance criterion over a
large extent of model and/or belief states (Williams and Johnson,
2013). For structural uncertainty in particular, robust decision making
involves the choice of actions for which the expected utility will be
“good enough” over as wide a range of model states as possible
(Williams and Johnson, 2013). This shifts the focus from expected
utility to the coverage of “good enough” values. The operative ques-
tion then becomes “what action will allow for the maximum range
of model states over which an adequate value is produced?” One
analytic approach to this question builds on the work of Ben-Tal
and Nemirovski (2002), Ben-Haim (2006), and others on robust op-
timization theory (though see Sniedovich (2010, 2014) and Hayes
et al. (2013) for critiques). Applications of robust decision making
in natural resources are in their infancy (Williams and Johnson,
2013), and much more work is required to develop both the theory
and computing software.

Though the explicit incorporation of learning, i.e., reduction of
uncertainty, into decision making opens up new opportunities for
improved decision making, it also presents new technical challenges.
In what follows we use the framework for adaptive decision making
under uncertainty to consider some key challenges facing practitioners
as they address the management of systems that are only partially un-
derstood, observed, and controlled.

4. Nonstationary resource changes

Adaptive management is usually framed in terms of an (often un-
stated) assumption that the processes influencing resource dynamics
are stable over the management time frame, in that patterns of uncon-
trolled fluctuations change little in their overall direction or range of
variation (Williams and Brown, 2012). Approaches to system analysis
and control, including the framework typically used in adaptive decision
making, have traditionally rested on that assumption of stability. That is,
the transition functions f(xt,at,et) and transition probability structures
P(xt+1|xt,at) are assumed to be fixed over time, with the recognition
that the system can fluctuate randomly because of environmental
drivers and other stochastic factors.

An increasingly important need is to extend the framework for adap-
tive decisionmaking to incorporate nonstationarity, i.e., to allow for de-
cisionmakingwhen systemdynamics do not exhibit stationary patterns
as described above. For a great many resource systems, the ecological
structures and processes controlling resource dynamics are changing
in ways not fully expressed by the standard stationarity assumptions.
For example, environmental conditions and the ecological processes in-
fluenced by them are exhibiting directional patterns of change. An obvi-
ous example is climate change, in which environmental variables such
as temperature and precipitation change directionally and cause sys-
temic change in resource dynamics. Large-scale human actions on the
landscape can also produce systemic change. A simple way to denote
such nonstationarity is to include a temporal index to characterize sys-
tem transitions. The transition function then becomes ft(xt,at,et), where
the functional index indicates that the function can change over time,
i.e., is nonstationary. In like manner, transition probabilities can be de-
noted by P(xt+1|xt,at; t) to indicate nonstationarity. In terms of adaptive
management, themodels used to represent uncertainty can be denoted
by Pk(xt+1|xt,at; t).

Nonstationarity is a newly recognized and serious challenge to adap-
tive decisionmaking, one for whichwe need new approaches that go be-
yond the standard framing of learning-based management. The cycle of
learning becomes more difficult when the subjects of investigation – the
ecological processes that determine resource change – are themselves
changing.
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Conservation-oriented examples of an adaptive approach to this
problem are provided by Martin et al. (2011a) in their study of mit-
igating the effects of sea-level rise on Florida manatees, and Conroy
et al. (2011) in their framework for managing forest bird communi-
ties in the face of climate change in the Appalachian Mountains. But
much more work will need to be done on decision making in gener-
al, and adaptive decision making in particular, to address this com-
plex issue.

5. Spatial and ecological scale

One concern in applications of adaptive management is the appropri-
ate scale for decision making. Adaptive management is often associated
with big, complex ecosystem-wide applications, such as large-river man-
agement (Columbia, Platte, and Missouri Rivers [Quigley and Arbelbide,
1997; Wissmar, and Bisson, 2003; Williams, 2006; Freeman, 2010];
Glen Canyon Dam on the Colorado River [U.S. Geological Survey, 2008]);
continental waterfowl harvest management (Williams and Johnson,
1995; Williams, 2006); commercial fisheries (Hilborn, 1992; Conover
and Munch, 2002); pest management in forest ecosystems (Shea et al.,
2002); and water management (Everglades [Holling et al., 1994]).
Ecosystem management at this scale involves economic, social,
institutional, and ecological linkages across large landscapes with
high degrees of heterogeneity.

However, adaptive decision making as we describe it here applies
equally well to local issues, as long as the basic conditions are met
(e.g., Williams et al., 2007). Moore et al. (2011b) provide a conservation
example involving prairie and wetland habitat restoration on national
wildlife refuges. There probably are many more potential applications
of adaptive management at local versus larger scales, not only because
of the prevalence of such problems but also because they can often be
framed more easily, their uncertainties can be identified more readily,
stakeholder involvement can be facilitated more directly, and man-
agement can often be implemented more easily (McConnaha and
Paquet, 1996).

Whatever its scale, the careful framing of a decision problem
often requires a combination of both larger and smaller scales than
the focal scale of decision making (Holling, 2001), to capture scale-
specific factors that influence resourcedynamics. Broader andmore inclu-
sive scales also are needed when conservation actions conflict with
other socio-economic goals. With large spatial scales a problem
can arise in linking conservation decisions that are applied locally,
and the challenge is to recognize the circumstances when such deci-
sions must be explicitly linked, and when they can be handled inde-
pendently. Though adaptive management provides a framework
and general approach for problems at different scales, these and
other scale-specific issues can arise that can make its systematic im-
plementation problematic for complex systems.

6. Models, management alternatives, and learning

Here we explore the roles of models and management alterna-
tives on the potential for learning and learning rate in adaptive
management. Smart decision making with adaptive management
is facilitated by learning, which in turn is facilitated by the presence
of variation in model performance as well as variation in decision
impacts. To aid in the identification of smart management strate-
gies, alternative actions should generate distinctly different predic-
tions. Similarly, learning is promoted when the models under
consideration lead to different predictions of resource conditions
over time. Put simply, adaptive decision making works best when
there is variation in the predictions across models for particular ac-
tions, and variation across actions for particular models.

The effect on learning of similar responses can be seen in the Bayesian
updating ofmodelweights qt(k) in themodel state. Assume that the tran-
sition probability structures across the models representing different
hypotheses are effectively identical, i.e., Pk(xt+1|xt,at)=Pk'(xt+1|xt,at).
Givenmodel weights qt(k) at time t, Bayesian updating produces weights
at the next time of

qtþ1 kð Þ ¼ qt kð ÞPk xtþ1jxt ; atð ÞX
k0
qt k0
� �

Pk0 xtþ1jxt ; atð Þ
¼ Pk xtþ1jxt ; atð Þ

Pk xtþ1jxt ; atð Þ
qt kð ÞX
k0
qt k0
� �

¼ qt kð Þ:

Thus, the absence of differences in model performance means there
can be no reduction of structural uncertainty, i.e., no learning. Basically,
learning as represented by the change in model weights does not occur
under these conditions.

A special case of adaptive decision making treats the management
alternatives themselves as hypotheses (Williams, 2011a), and examines
them using experimental design and hypothesis-testing procedures
(Graybill, 1976). Alternatively, when interventions are carried out se-
quentially one can compare monitoring data against predictions for
each alternative to update confidence in the alternatives. One common
method is to update confidence weights at each decision point by com-
paring predicted responses with post-decision monitoring data
(Williams et al., 2002), with the change in theweights leading gradually
to a recognition of the best intervention. The relevance of Bayesian
updating for conservation applications is shown by a few examples,
such as optimal control of human disturbance of nesting golden eagles
(Aquila chrysaetos) (Martin et al., 2009, Martin et al., 2011b), dam re-
lease prescriptions to protect aquatic habitats (Irwin and Freeman,
2002), and native plant revegetation strategies in Australia (McCarthy
and Possingham, 2007).

7. Monitoring

Monitoring plays a critical role in adaptive management in allowing
the comparison of model-based predictions and estimated responses to
facilitate learning. In fact, monitoring programs provide data for four
key purposes: 1) evaluation of progress toward achieving objectives;
2) determination of resource status, in order to identify appropriate
management actions; 3) learning about resource dynamics via the
comparison of predictions against survey data; and 4) development
and enhancement of models of resource dynamics as needed (Williams
et al., 2007).

In consideration of its critical role in any adaptive management ap-
proach, monitoring needs to be well-designed and ongoing over the
life of an adaptive management project. Some situations that challenge
these conditions are the following.

• The frequency of monitoring cannot keep pace with changes in the
natural system.

• A design for experimental management and monitoring cannot be
developed to test hypotheses, either because understanding of the
resource system is too limited or management is too constrained to
design a meaningful experiment.

• There is not a firm commitment to funding and institutional support
for monitoring for the duration of the learning effort. Though fun-
damental to adaptive management, monitoring is often the first
function to be curtailed by some administrators and managers
due to budget pressures.

It may be that with some limited re-orientation and re-designing, an
extant monitoring effort can prove useful in meeting the purposes of
adaptive decision making. The challenge is to integrate monitoring
into the management framework in such a way that it is seen as critical
rather than optional. Examples of the crucial role ofmonitoring in adap-
tive management applications for conservation have been provided by



Fig. 3. Adaptive management displayed as cycles of technical and institutional learning.
The implementation component refers to implementation of a designed process based
on problem assessment, which then is used to initiate technical learning. Solid lines
represent the complete adaptive cycle, involving deliberative and iterative elements as
well as institutional learning. The dashed line indicates feedback defining the technical
learning cycle.
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many authors, such as Conroy et al. (2011), Lyons et al. (2010) and
Nichols and Williams (2006).

8. Valuing information

A natural question that arises in adaptive decision making concerns
the value of the added information produced. Though the concept of a
measurable value for information has been recognized for several de-
cades (Raiffa and Schlaifer, 1961; Yokota and Thompson, 2004), more
recently the “value of information” has begun to surfacewith increasing
frequency in conservation, for example in considering costs and benefits
associated with obtaining information from particular sampling tech-
niques, orwith resolving particular sources of uncertainty. Conservation
examples that incorporate analysis of the value of information include
reintroduction of whooping cranes (Grus Americana), as discussed by
Runge et al. (2011); recovery of the Florida scrub-jay (Aphelocoma
coerulescens), as discussed by Williams et al. (2011); and management
of pink-footed geese (Anser brachyrhynchus), as discussed by Williams
and Johnson (2015a) and Johnson et al. (2014). In simple terms, the
value of information represents a potential increase in value resulting
frombetter information to guidemanagement. If we assume an ongoing
if imperfectmonitoring effort that informs decisionmaking, the value of
information is effectively an indicator of themarginal value of additional
monitoring.

In the context of structural uncertainty, an intuitive way to under-
stand the value of information is as a comparison of aggregate utility
that could be produced if the resource systemwere fully known, against
the aggregate utility produced in the presence of uncertainty (Williams
and Johnson, 2015b). The latter expression corresponds to decision
making under structural uncertainty, i.e., adaptive management. In
that sense the adaptive decision framework serves as a platform for
the value of information in iterative decision making. Variations of the
value of information include the expected value of partial information,
which accounts for the increased value accruing to the elimination of
uncertainty from some but not all sources, and the expected value of
sample information, which accounts for the gain in valuewith addition-
al sampling. In both these situations, valuation through adaptive deci-
sion making serves as the baseline to assess the improvement of value
with reduced uncertainty (Yokota and Thompson, 2004; Williams and
Johnson, 2015a).

9. Surprise, resilience, and flexibility

Natural resources management is always vulnerable to a “discon-
nect” between the ecosystem behaviors we expect and those that actu-
ally occur (Gunderson, 1999). Surprise can never be eliminated, no
matter how learning-based and carefully framed resourcemanagement
is. Surprise and associated concerns with uncertainty and resilience are
central issues in an expansive literature that comes under the rubric of
“resilience thinking” (Gunderson and Holling, 2002; Walker and Salt,
2006; Scheffer, 2009). According to resilience thinking, natural systems
are subject not only to reversible short-term change, but also to long-
term change that is effectively irreversible. A developing theory of resil-
ience emphasizes “stability basins” for ecological conditions, and
thresholds beyond which reversible change within a zone is unlikely
once a threshold is crossed. Adaptive management can play an impor-
tant role in accumulating the knowledge needed to manage for
resilience-based objectives over time and improve long-term resource
viability (Zellmer and Gunderson, 2009).

One conclusion of resilience thinking is that when management
focuses on only one or a few ecosystem attributes, a result is the loss
of resilience and an increased vulnerability to unexpected and
destructive change (Johnson et al., 2013). Well-known examples
include the intensive management of grazing, which can increase the
vulnerability of grasslands to drought (Walker and Salt, 2006); and
intensive management of commercial fishing, which can lead to the
unexpected collapse of a commercial fishery (Walters, 1986). Surprises
like these usually are a result of managing in ways that induce stability
in targeted ecosystem components in the short term but result in the
loss of ecosystem resilience over the long term, and an increase in the
vulnerability of the system to extreme and often unwanted changes
(Williams and Brown, 2014).

Williams and Brown (2012) identified some steps that can be taken
to deal with surprise in the management of ecosystems, as follows.

• Recognize that in anymanaged ecosystem uncertainty and the poten-
tial for surprise are implicit in the scenarios under consideration.

• Incorporate models that are based on broadly differing assumptions,
with broadly differing predictions.

• Retain enough management flexibility to adapt to surprise when it
occurs.

• Manage the system for sufficient resilience to maintain structure and
function when external shocks occur.

• Increase the range of ecosystem conditions,management alternatives,
and sources of evidence that are considered.

• Use experimental management and monitoring to learn and manage
adaptively.

10. Institutional learning

Adaptive management involves not only the potential for technical
learning about a natural resource system and how it responds to man-
agement interventions, it also involves the potential to learn about the
decisionmaking process itself. In this sense there are really two learning
cycles in adaptivemanagement,with the technical learning cycle nested
within a larger cycle of institutional learning (Fig. 3). A typical situation
involvesmultiple iterations of the technical learning cycle duringwhich
the institutional framework remains more or less unchanged, followed
by a break in technical learning to revisit and potentially restructure
some of the institutional elements (Williams and Brown, 2014). Togeth-
er the two cycles are referred to as double-loop learning (Argyris and
Shon, 1978). Pahl-Wostl (2009) expanded this model to include three
cycles, by distinguishing socio-political and governance aspects of
stakeholder involvement as yet another cycle. In combination the
three cycles are held to address three different questions: “Are we
doing things right? (technical learning loop); “Are we doing the right
things?” (process learning loop); and “Who has the rights?” (socio-
political and governance loop) (Johnson et al., 2015). Here we restrict
our further discussion to double-loop learning, with governance issues
folded into the institutional learning cycle.
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Because of the dynamic nature of governance, the need to revisit and
adjust the process and governance elements of adaptive management
often becomes more pressing as adaptive management proceeds over
time. Stakeholder perspectives and values can and do change over
time, as previously unanticipated patterns in resource dynamics are ex-
posed and social and cultural values and norms change. Any of these
changes can produce a need to adjust objectives, alternatives, and
other set-up elements.

Institutional learning sometimes can serve a critical role in helping
to overcome disagreements among stakeholders about management
objectives, alternatives, and projected management consequences. It is
much easier to agree to move forward with a particular management
strategy if it is understood that objectives, management alternatives,
and the other elements of decision making can be reviewed and
renegotiated as new evidence about management performance be-
comes available. Institutional learning offers an incentive to stake-
holders to agree on an initial approach that involves compromise on
all sides. In a conservation example, Irwin and Kennedy (2008) found
this to be the case during stakeholder negotiations for an initial dam-
release prescription to conserve aquatic habitats of fishes endemic to
the Tallapoosa River (Irwin and Freeman, 2002). Without such a possi-
bility, on the other hand, negotiation to establish a fixed and permanent
approach leaves all parties more entrenched in their positions because
they believe the outcome can't be changed.

Challenges in institutional learning include the identification of
criteria for when to break out of the technical learning cycle and revisit
the decision process elements. If the revisitation is too frequent, the
effects of change at the technical and institutional levels become con-
founded, significantly slowing the rate of learning for both. If it is too in-
frequent, there is a risk of the loss of commitment of stakeholders as
values change, alternatives are marginalized, models cease to perform
effectively in predicting system dynamics, objectives lose their rele-
vance, etc.

An additional challenge is how to address potential changes in pro-
cess elements once they are revisited. One of the biggest challenges in
institutional learning involves the identification and updating of objec-
tives, which play a crucial role in driving decisions and evaluating their
consequences. Yet it is not uncommon for stakeholders to have very dif-
ferent ideas about what attributes are important and how to measure
their importance over time, so that finding common ground is difficult
in the first place, and a process by which to reconsider and possibly ad-
just previously agreed-upon objectives on the basis of experience and
performance is an even bigger challenge. There have been a few at-
tempts to formalize a learning process for objectives and other elements
(Williams, 2012), but much more needs to be done.

11. Discussion

Adaptive management recognizes uncertainties about resource pro-
cesses and their responses to management, and emphasizes the track-
ing and reduction of uncertainty through management on the basis of
what is learned over time. In this paper we have highlighted some of
the challenges in the implementation of adaptive management, build-
ing on a framework that recognizes both an architecture for decision
making and a learning process that folds directly into management.
Learning is seen as improvements in technical understanding that aim
at biological processes, and institutional improvements that aim at the
architectural elements of decision making. We have used this frame-
work to explore a number of practical challenges to adaptive decision
making.

In termsof the institutional context of learning,we believe that iden-
tifying objectives and getting stakeholders to buy in constitute two of
the biggest challenges in adaptive management. Stakeholders often
have different ideas about what importance to assign to system attri-
butes. We do not address this issue to any great extent here, and simply
note that there is a great wealth of information and advice in the social
literature about how to achieve consensus among stakeholders with
disparate views. Here we have focused primarily on structural uncer-
tainty, since its reduction is a distinctive point of emphasis in adaptive
decision making.

We note that the framework for adaptive management can also
accommodate other sources of uncertainty, and in particular partial ob-
servability. In fact, there are many similarities in the treatments of par-
tial observability and structural uncertainty (Williams, 2009, 2011b).
For example, both problems involve the averaging of transitions and
utilities across an uncertainty attribute, and both use value functions
that incorporate present and expected future utilities. The key differ-
ences between them are the nature of the uncertainty attribute, and
the way uncertainty is handled in valuation. Each problem is subject
to its own form of uncertainty, either about process functions and pa-
rameters or about system status.With structural uncertainty the system
state is observed, but the process structure is only partially known and
must be characterizedwith time-specificmodel probabilities. Converse-
ly, with partial observability it is the system structure that is known, but
the system state is only partially observed and must be characterized
with time-specific state probabilities.

There are other important differences that must be accounted for as
well. Under partial observability valuation is conditioned on belief state
(Eq. (4)), whereas under structural uncertainty it is conditioned on both
resource and model states (Eq. (3)). On the other hand, the inclusion of
stochastic observations under partial observability results in a more
complicated transition structure than is the case with structural uncer-
tainty.Which of these situations ismore difficult to handle no doubt de-
pends on the process structure and stochastic components.

As mentioned earlier, a significant challenge with adaptive manage-
ment is to integratemultiple sources of uncertainty into decisionmaking,
and to assess their interactions. This challenge is made more difficult
when one seeks to identify optimal strategies (Williams, 2009), and the
challenge is greater still in the presence of nonstationarity. In order to
contain costs and maximize value with adaptive decision making, a
good deal more thinkingwill need to go into designing adaptivemanage-
ment projects that successfully deal with multiple sources of uncertainty.
A technical assessment of the value of the information may contribute to
improved project design, but a low value should not bemisinterpreted as
meaning that there is little value in using an adaptive approach to man-
agement. It should be recognized that low values are often recorded in
conservation and natural resources applications (Walters, 1986; Moore
and McCarthy, 2010; Johnson et al., 2014), and this information metric
is not the only, and possibly not even the most relevant, measure of
value for the decision framework. Among other things, a systematic and
structured accounting of the elements of decision making can serve as a
mechanism for collaboration and shared decision making, lowering the
potential contentiousness and conflict among stakeholders. The value of
information can certainly contribute to, but should not obscure, these
and other benefits accruing to a structured, adaptive process of decision
making.

12. Conclusions

It has been a long road in making adaptive management legitimate
and useful as a paradigm to guide natural resources decision making,
and in particular decision making about biodiversity conservation
(Runge, 2011). At this point there is a well-developed framework and
process with which to recognize and characterize uncertainties, and re-
duce them through the use of management itself. But a changing cli-
mate, widespread landscape change, accelerating biodiversity loss, and
changing cultural values expand the context for resource management
and create new problems for the application of an adaptive approach
to management.

In many ways these challenges are generic problems for the 21st
century, and they apply to themanagement of many urgent conservation
problems. Together they increase the difficulties faced by practitioners in
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making smart decisions in the face of new problems. Adaptive man-
agement provides a context and model for addressing many of these
challenges, and in some cases it may be the only way forward for
their resolution. However, the adaptive management paradigm
will need to be adjusted and expanded to accommodate the new is-
sues that are only now coming into focus.
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