
DCS 104.4

Department of the Interior
US Geological Survey

DATA CAPTURE SYSTEM (DCS)

Software Design Description DCS-104

Release 1.4

Version 5.0

December 2002

9/10/09 - ii - DCS 104.4

DATA CAPTURE SYSTEM (DCS)

Software Design Description
DCS-104

Release 1.4

December 2002

Prepared By: Approved By:

9/10/09 - iii - DCS 104.4

Document Change Summary

List of Effective Pages

Page Number Issue
All
Sections 4.1.1.2.7, 4.1.1.7.13
Sections 4.1.1.7.1

Sections 4.1.1.7.1
Sections 4.1.1.1.3, 4.1.1.7.1,
4.1.1.7.10, 4.1.1.7.12, 4.3.2.3.5
Section 5.3

Section 5.1.5.2

Original
CTS to DDS Raw Data Transfer Via Gui
Change to DCS_GUI – Make selected

file stand out
DCS_GUI (icons greyed out)

DCS – Add capability to flag IGS
validation and exchange data

DCS – Add a Moving Window Display
during data capture

Allow OPS to Configure DCS READY
Status for Any Ground Station

3.1.1.7.12 1943 – DCS - Incorrect Archive Status
3.3.2, 3.1.1.2.5, 3.1.1.7.2, 4.1.2.5,
A.15

2000 – DCS -- add capability for a CTS
to back-up another CTS.

3.1.1.5.2, 3.1.2.2, A.10 2006 – DCS -- FILE_SIZE field in DB
does not work for ASN data.

3.1.1.2.5, 3.1.1.7.2, A.6, A.9 2063 – CTS3 Tape Drive (tps1d4)
always shows a READY status-
even with no tape in it.

3.1.1.7.15 2067 – DCS Initialize Tape GUI Refresh
Problem

3.1.1.5.2 2076 – DCS - Disable Recapture of
RAW file if previous capture is
not HOLD or SUCCESS

3.1.1.2.1 2135 – DCS - core dump -core is an
invalid schedule file,

2.5 2143 – DCS - PR Moving Window
Display

3.1.2.1 2170 – DCS - LCTS2 Capture failure
with unable to open device error

Document History

Document Number Status/Issue Publication Date Change Number

9/10/09 - iv - DCS 104.4

4.0
4.0
4.0
4.0
4.0
4.0
4.0

Original
DCS 104.3
DCS 104.3
DCS 104.3
DCS 104.3
DCS 104.3
DCS 104.3

June 2002
June 2002
June 2002
June 2002
June 2002
October 2002
October 2002

N/A
CCR 1618
CCR 1662
CCR 1677
CCR 1904
CCR 1996
CCR 2068

5.0 DCS 104.4 December 2002 CCR 1943
CCR 2000
CCR 2006
CCR 2063
CCR 2067
CCR 2076
CCR 2135
CCR 2143
CCR 2170

9/10/09 - v - DCS 104.4

Table of Contents

Document Change Summary .. iii
Table of Contents.. v
List of Figures ... vii
List of Tables .. ix
List of Tables .. ix
Section 1 INTRODUCTION ... 10

1.1 Identification .. 10
1.2 System Overview .. 10
1.3 Document Overview .. 10

Section 2 Design Considerations .. 11
2.1 Assumptions and Dependencies .. 11
2.2 General Constraints .. 11
2.3 Conventions .. 11
2.4 Methodology ... 11
2.5 System Architecture .. 11
2.6 Other Design Considerations .. 13

Section 3 Architectural Design .. 14
3.1 CSCI components ... 14

3.1.1 DCS Database Server (DDS) .. 14
3.1.2 Capture Transfer Subsystem (CTS) .. 61
3.1.3 Capture Transfer Display (CTD) .. 68

3.2 Concept of execution .. 68
3.2.1 Normal Raw Data Flow .. 68

3.3 Interface design. ... 69
3.3.1 Interface identification and diagrams. .. 69
3.3.2 DDS to CTS Interface .. 69
3.3.3 DCS to Destination Systems Interface .. 76
3.3.4 MOC to DDS Interface ... 76
3.3.5 RDC to MWD Formatter Interface ... 76
3.3.6 CTS to CTD Interface ... 79

Section 4 CSCI Detailed Design .. 81
4.1 DCS Database Server .. 81

4.1.1 Database Component .. 81
4.1.2 Monitor and Control Component .. 81
4.1.3 Back-up Archive Component ... 99
4.1.4 Delete Raw Files Component (DDS) ... 101
4.1.5 Restage from Tape Component .. 103
4.1.6 Journaling Component ... 110

4.2 Capture Transfer Subsystem .. 111
4.2.1 AutoCapture Component ... 111
4.2.2 Raw Data Capture Component .. 118
4.2.3 Transfer To Tape Component ... 120

9/10/09 - vi - DCS 104.4

4.2.4 Delete Raw Files Component (CTS) .. 125
4.2.5 Raw File Transfer Component (CTS) .. 127
4.2.6 Raw Data Transmit Component .. 130
4.2.7 Journaling Component ... 131

4.3 MWD Formatter Component ... 131
4.3.1 Purpose ... 131
4.3.2 Subcomponent Design .. 133

4.4 Moving Window Display Component .. 190
Section 5 Requirements Traceability .. 191
Section 6 Notes ... 199

6.1 Raw Data File Queue .. 199
Appendix A APPENDIXES .. 201
A DDS_OPS_DB Data Dictionary .. 201

A.1 MISSION_ACCT ... 201
A.2 MISSION_STATION_ACCT ... 201
A.3 DESTINATION_ACCT .. 201
A.4 ROUTING_ACCT .. 202
A.5 CONTACT_SCHEDULES ... 202
A.6 DCS_CAPTURE_ACCT ... 203
A.7 CAPTURE_MISSION_ACCT .. 204
A.8 DCS_CONTACT_SCHED_FILES .. 204
A.9 DCS_CONFIGURATION .. 205
A.10 DCS_RAWFILE_ACCT ... 206
A.11 TRANSFER_ACCT ... 207
A.12 TRANSFER_ACCT_ARCHIVE ... 208
A.13 BACKUP_ACCT .. 208
A.14 TEMP_CTS_FILES ... 208
A.15 DCS_CAPT_CHAN_MAP ... 209

Appendix B Acronyms .. 210
Referenced Documents .. 211

9/10/09 - vii - DCS 104.4

List of Figures

Figure 2-1 DCS Environment .. 12
Figure 3-1 DCS Database Subsystem .. 15
Figure 3-2 DCS Database Schema ... 16
Figure 3-3 mac_DDS .. 23
Figure 3-4 mac_IngestContact and mac_GenSuptSchedule .. 25
Figure 3-5 mac_SendSetup .. 27
Figure 3-6 mac_ManCapture .. 28
Figure 3-7 mac_GetCTSFileList .. 29
Figure 3-8 mac_BackupArchive and mac_DeleteRawFiles .. 30
Figure 3-9 mac_Restage and mac_UpdDCSAcct ... 32
Figure 3-10 mac_DDS_gui Setup Menu Activations ... 35
Figure 3-11 mac_DDS_gui Control Menu Activations ... 36
Figure 3-12 mac_DDS_gui Button Activations .. 37
Figure 3-13 DCS Main Window ... 38
Figure 3-14 Set Capture Parameters .. 41
Figure 3-15 Capture Channel Map .. 43
Figure 3-16 Edit Contact Schedules .. 44
Figure 3-17 Generate Tape Label ... 45
Figure 3-18 Ingest Contact Schedules .. 46
Figure 3-19 Manual Data Capture ... 48
Figure 3-20 Start Copy to Tape ... 50
Figure 3-21 Start Restage ... 51
Figure 3-22 DDS Configuration GUI .. 53
Figure 3-23 Mission Configuration GUI ... 54
Figure 3-24 Destination System Configuration GUI .. 55
Figure 3-25 Raw File Details GUI .. 57
Figure 3-26 Transfer History GUI .. 58
Figure 3-27 Transfer File GUI ... 59
Figure 3-28 Initialize Tape ... 60
Figure 3-29 Capture Transfer Subsystem ... 62
Figure 4-1 mac_DDS Flowchart .. 84
Figure 4-2 Check_for_schedule Flowchart .. 85
Figure 4-3 Check_disk_space flowchart ... 86
Figure 4-4 Check_for_xfers Flowchart .. 87
Figure 4-5 mac_IngestContact Flowchart ... 90
Figure 4-6 mac_GenSuptSchedule Flowchart .. 93
Figure 4-7 mac_BackupArchive Flowchart .. 101
Figure 4-8 mac_DeleteRawFiles Flowchart ... 103
Figure 4-9 mac_Restage Flowchart .. 106
Figure 4-10 mac_UpdDCSAcct Flowchart .. 109
Figure 4-11 rdc_AutoCapture Flowchart ... 114
Figure 4-12 rdc_AutoTransfer Flowchart ... 117
Figure 4-13 rdc_Capture Flowchart ... 120

9/10/09 - viii - DCS 104.4

Figure 4-14 rdc_Save Flowchart ... 123
Figure 4-15 rdc_DeleteFiles Flow Chart .. 127
Figure 4-16 rdc_TransferFile Flow Chart .. 129
Figure 4-17 Processing String .. 133
Figure 6-1 Raw Data Queue ... 200

9/10/09 - ix - DCS 104.4

List of Tables

Table 1: MISSION_ACCT ... 201
Table 2: MISSION_STATION_ACCT .. 201
Table 3: DESTINATION_ACCT .. 201
Table 4: ROUTING_ACCT .. 202
Table 5: CONTACT_SCHEDULES ... 202
Table 6: DCS_CAPTURE_ACCT .. 203
Table 7: CAPTURE_MISSION_ACCT .. 204
Table 8: DCS_CONTACT_SCHED_FILES ... 204
Table 9: DCS_CONFIGURATION ... 205
Table 10: DCS_RAWFILE_ACCT ... 206
Table 11: TRANSFER_ACCT ... 207
Table 12: TRANSFER_ACCT_ARCHIVE ... 208
Table 13: BACKUP_ACCT .. 208
Table 14: TEMP_CTS_FILES ... 208
Table 15: DCS_CAPT_CHAN_MAP ... 209

9/10/09 - 10 - DCS 104.4

Section 1 INTRODUCTION

1.1 Identification
The purpose of this document is to present the detailed software design for the

Data Capture System (DCS). The DCS was developed for the United States
Geological Survey’s (USGS) Earth Resources Observation System (EROS) Data
Center (EDC) of the United States Department of Interior (DOI) for operation at
the EDC.

1.2 System Overview
The DCS was developed to be a modular wideband data capture platform. As a

modular platform, the DCS will be used to capture data on multiple missions.
Therefore, whenever possible, the DCS design is defined without regard to a
specific mission.

1.3 Document Overview
This SDD describes the DCS software structure, the software components, the

interfaces and data necessary for DCS implementation. Every requirement in
the DCS SRS is traceable to one or more design entities in this SDD. This
document comprises seven sections and one appendix:

• Section 1 contains the introduction, the system overview, and the document

overview.
• Section 2 presents design considerations/decisions.
• Section 3 describes the CSCI architectural design.
• Section 4 provides a detailed description of each software component.
• Section 5 contains traceability from each software unit to the CSCI requirements

allocated to it. Also presented is traceability from each CSCI requirement to the
software units to which it is allocated.

• Section 6 contains general information that aids in understanding this document.

9/10/09 - 11 - DCS 104.4

Section 2 Design Considerations

2.1 Assumptions and Dependencies

The system design set forth in this document assumes the following:
• Changes to existing modules and creation of new modules will be to

support required new functionality.

2.2 General Constraints
In addition to the software and hardware constraints outlined in the DCS Software

Requirements Specification (SRS) (Applicable Document 0) the development
of this software is constrained by the following:

2.3 Conventions
The file and module naming convention will follow the convention used in the DCS

software that is being reused, namely:
• All file and module names on the CTS will follow the same convention used in

RDCS (i.e. names will begin with ‘rdc_’). The CTS will not need database
access routines; therefore the rdc_db_XXX routines will be renamed to
mac_db_XXX routines if they are reused on the DDS. Processes built for the
CTS that are reused on the DDS will be reused without a name change.

• A portion of the global library routines originally reused from LPS are reused
on the DDS and CTS. All file and module names reused without any
modification will follow the same convention used on LPS (i.e. names will
begin with ‘lps_’ or ‘lps_db’). New or modified global routines will have a
naming convention where the file and module names begin with ‘dcs_’.

2.4 Methodology
The approach for the DCS software design is to leverage off existing DCS software.

The code itself serves as a design to be modified.

2.5 System Architecture
Refer to Error! Reference source not found. for the DCS Environment in Figure

2-1. The DCS has two basic subsystems: the DCS Database Subsystem (DDS)
and one or more Capture Transfer Subsystems (CTS). The DDS serves as the
primary operator station for the entire DCS and also tracks raw file delivery to
destination systems and/or to back-up tapes (for contingencies). Each CTS also
can have an optional Capture Transfer Display (CTD) subsystem which can be
used to show a Moving Window Display of imagery during raw data capture.

9/10/09 - 12 - DCS 104.4

Figure 2-1 DCS Environment

Each CTS will receive and temporarily store one to four raw wideband data streams
obtained from a receiving station (such as a satellite receiving station). The raw
data streams will be captured onto the subsystem’s local storage using one or
two high-speed dual channel serial capture devices. During capture, the raw data
is also buffered and made available for an optional Moving Window Display
(MWD).

The Moving Window Display is useful for monitoring data quality during capture.
The CTD displays video imagery as the CTS captures it to disk. The CTD can
also re-distribute the video to other, remotely connected MWDs.

After the wideband data is captured, the CTS will transfer the data to the DDS for
distribution to mission-defined destination systems. Destination systems are
defined as either processing or archiving systems. The main difference to DCS
is that archiving systems will permanently store the raw data, whereas the
processing systems do not. This is important for DCS automated and manual
clean-up operations. DCS will ensure that either all archiving systems have
received a raw file or the file is backed up to tape before it is automatically
deleted from local storage. Processing systems that need to process a file that
is no longer in the DCS inventory (on-line or on tape) will need to request the
tape from the corresponding mission’s archiving system.

Destination Systems

Receiving Stations

Mission Operations Centers

Processing Systems

Archive Systems

schedules

DCS
DCS Database
Server

Capture Transfer
Display Subsystem

MWD

MWDMVD

Remote
MWDs

MWD

MWD

MWD

video

9/10/09 - 13 - DCS 104.4

Each CTS will also have the ability to function stand-alone (i.e. without the DDS).
In stand-alone mode, operational setup is performed via editing text files and the
wideband data will be transferred to tape for transport. These tapes can then be
ingested onto the DDS for distribution to the destination system(s).

The DDS will be used to temporarily store the captured wideband data for retrieval
by the destination systems. The wideband data will be received from the CTS(s)
via network transfer or from tape (for ingest of data from the CTSs operating in
stand-alone mode). Normally, the raw data is then transferred by the appropriate
network-connected destination system(s). The transfer is initiated and carried
out by the destination systems. DDS operators can also copy selected raw data
to tape in atypical operation.

Each mission will have a mission operations center (MOC) that will deliver mission-
specific contact schedules to the DDS. The contacts defined in the schedule are
for live automated captures at EDC. No data is transferred from the DDS to the
MOCs.

2.6 Other Design Considerations
Since the DCS design was leveraged off existing LPS code, there are quite a few

constants/functions, etc. that are named for the LPS architecture and thus have
“LPS_” in the name. Those constants and functions that are re-used without
modification will not be renamed.

The DCS design also incorporates re-used MWD Formatter code written in C++
and MWD server code written in Delphi.

9/10/09 - 14 - DCS 104.4

Section 3 Architectural Design

3.1 CSCI components
The Data Capture System software is divided into four computer software

configuration items (CSCIs): the Monitor and Control Subsystem (MACS), the
Raw Data Capture Subsystem (RDCS), the Moving Window Display Formatter,
and the Moving Window Display server. The MACS will execute on the DDS, the
RDCS and MWDFormatter will execute on the CTS, and the MWD will execute
on the CTD.

3.1.1 DCS Database Server (DDS)

The DCS Database Server (DDS) is responsible for making raw data available to
processing systems and archive systems. The DDS is also the main operator
station for controlling raw data capture operations.

9/10/09 - 15 - DCS 104.4

Figure 3-1 shows the top-level data flow for the DDS. The following paragraphs
explain each of the processes in more detail.

Figure 3-1 DCS Database Subsystem

3.1.1.1 Database Component

The database component is defined below. For complete details of the DCS
database, refer to applicable document #0.

mac_DDS

mac_IngestContact

mac_GenSuptSchedule

mac_InsertFileNames

mac_SendSetup

mac_ManCapture

mac_Backup

mac_Restage

mac_UpdDCSAcct

mac_Delete

id

CTS

id Support Schedule

id Setup Information

id Manual Capture parms

id Raw Data Files

id

MOC

id

Destination
Systems

id Contact Schedule

DDS Database

GUI

mac_GetCTSFileList
id File List

mac_ListTapeDrives

9/10/09 - 16 - DCS 104.4

Figure 3-2 DCS Database Schema

The DCS Database will be DDS_OPS_DB database, a stand-alone Oracle schema
on the DDS. The DCS Database schema is shown in Figure 3-2. Appendix A
contains the data dictionary for DDS_OPS_DB.

3.1.1.1.1 Table MISSION_ACCT

3.1.1.1.1.1 Purpose

Mission Identification is defined in table MISSION_ACCT. The table lists each
mission supported by DCS, along with the directory path for raw files and the
default priority assignment.

Only privileged operators will be able to modify this table.
Requirements defined in SRS 3.1.2.1 are allocated to this table.

3.1.1.1.1.2 Development Status

Table MISSION_ACCT will be reused without change.

TAPE_ID (AK)
RAW_DATA_FILE_NAME (IE)
TAPE_POSTION (AK)
BACKUP_DATE

BACKUP_ACCT

XFER_IDLE_TIME
SOFTWARE_VER_NUM
IP_ADDRESS
USER_NAME
PASSWORD
SCHEDULE_DIR
PARAMETER_DIR
TRANSFER_OPTION
DELETE_RAW_FILE

CAPT_SYS_ID

DCS_CAPTURE_ACCT

DATA_TYPE
CAPTURE_SOURCE
SCHEDULED_START_TIME
ACTUAL_STOP_TIME
ACTUAL_START_TIME
CAPTURE_STOP_TIME
RECEIVED_DATA_VOL
EXPECTED_DATA_VOL
SCHEDULED_DATA_VOL
FILE_SIZE
TRANSMISSION_RATE
ISOLATE_FLAG
SUSPEND_FLAG
ON_LINE_FLAG
PRIORITY
ORIGIN_STATION

RAW_DATA_FILE_NAME
CAPT_SYS_ID/1 (FK)
MISSION_ID/1 (FK)
DATA_TYPE/1 (FK)

DCS_RAWFILE_ACCT

DEST_NAME
ARCHIVE_FLAG

DEST_SYS_ID

DESTINATION_ACCT

MISSION_NAME
RAW_DATA_PATH
PRIORITY
DATA_TYPE

MISSION_ID

MISSION_ACCT

INITIAL_XFER_STATUS
DATA_TYPE (AK)

DEST_SYS_ID/1 (FK)
MISSION_ID/1 (FK)
DATA_TYPE/1 (FK)

ROUTING_ACCT

XFER_STATUS
STATUS_DATE

RAW_DATA_FILE_NAME/1 (FK)
CAPT_SYS_ID/1 (FK)
DEST_SYS_ID (FK)

TRANSFER_ACCT

SCHEDULED_START_TIME
MISSION_ID
SCHEDULED_STOP_TIME
PRIORITY
DATA_TYPE

MISSION_ID/1 (FK)
DATA_TYPE/1 (FK)

CONTACT_SCHEDULES

SOFTWARE_VER_NUM
AUTO_CLEANUP_ENABLE
DCS_HW_STRING_ID
TRANSFER_POLL
DISK_SPACE_POLL
DISK_SPACE_THRESH
DELETION_DELAY
FTP_LOGIN_NAME
FTP_PASSWORD
FTP_RAWFILE_DIR
SCHEDULE_POLL

DCS_CONFIGURATION

FILE_NAME

DCS_CONTACT_SCHED_FILES

DATA_TYPE

CAPT_SYS_ID/1 (FK)
MISSION_ID/1 (FK)
DATA_TYPE/1 (FK)

CAPT_MISSION_ACCT

DATA_TYPE

STATION_ID
MISSION_ID/1 (FK)
DATA_TYPE/1 (FK)

MISSION_STATION_ACCT

RAW_DATA_FILE_NAME
FILE_SIZE
TRANSFERRED

TEMP_CTS_FILES

XFER_STATUS
STATUS_DATE

RAW_DATA_FILE_NAME
DEST_SYS_ID

TRANSFER_ACCT_ARCHIVE

DEVICE
STATUS

DCS_TAPE_DRIVE_INFO

DESCRIPTION

DATA_TYPE

DCS_DATA_TYPE_ACCT

9/10/09 - 17 - DCS 104.4

3.1.1.1.1.3 Resource Utilization

The resource utilization for table MISSION_ACCT is expected to remain trivially
small (only 1 record per supported mission/data_type combination).

3.1.1.1.1.4 Program Library

Table MISSION_ACCT is implemented in the DDS_OPS_DB schema.

3.1.1.1.2 Table DESTINATION_ACCT

3.1.1.1.2.1 Purpose

Destination System Identification is defined in table DESTINATION_ACCT. The
table lists each raw data file destination system that will retrieve data from DCS.

Only privileged operators will be able to modify this table.
Requirements defined in SRS 3.1.2.2 are allocated to this table.

3.1.1.1.2.2 Development Status

Table DESTINATION_ACCT will be reused without change.

3.1.1.1.2.3 Resource Utilization

The resource utilization for table DESTINATION_ACCT is expected to remain
trivially small (only 1 record per supported destination system).

3.1.1.1.2.4 Program Library

Table DESTINATION_ACCT is implemented in the DDS_OPS_DB schema.

3.1.1.1.3 Table ROUTING_ACCT

3.1.1.1.3.1 Purpose

Raw data file routing information is defined in table ROUTING_ACCT. The table
lists all raw data file destination systems that will retrieve data from DCS by
mission.

All operators will be able to modify this table.
Requirements defined in SRS 3.1.2.3 are allocated to this table.

3.1.1.1.3.2 Development Status

Table ROUTING_ACCT will be reused without change.

9/10/09 - 18 - DCS 104.4

3.1.1.1.3.3 Resource Utilization

The resource utilization for table ROUTING_ACCT is expected to remain trivially
small (only 1 record per supported mission/destination combination).

3.1.1.1.3.4 Program Library

Table ROUTING_ACCT is implemented in the DDS_OPS_DB schema.

3.1.1.1.4 Table MISSION_STATION_ACCT

3.1.1.1.4.1 Purpose

Ground stations assigned to each mission will be listed in table
MISSION_STATION_ACCT. The table lists all ground station identifiers for each
mission supported by DCS.

All operators will be able to modify this table.
Requirements defined in SRS 3.1.2.1 are allocated to this table.

3.1.1.1.4.2 Development Status

Table MISSION_STATION_ACCT will be reused without change.

3.1.1.1.4.3 Resource Utilization

The resource utilization for table MISSION_STATION_ACCT is expected to be
remain small (only a few stations for each supported mission).

3.1.1.1.4.4 Program Library

Table MISSION_STATION_ACCT is implemented in the DDS_OPS_DB schema.

3.1.1.1.5 Table CONTACT_SCHEDULES

3.1.1.1.5.1 Purpose

Contact schedule files will be ingested into table CONTACT_SCHEDULES. The
table lists all scheduled downlinks for live supports at EDC.

All operators will be able to modify this table.
Requirements defined in SRS 3.1.3.1 are allocated to this table.

3.1.1.1.5.2 Development Status

Table CONTACT_SCHEDULES will be reused without change.

9/10/09 - 19 - DCS 104.4

3.1.1.1.5.3 Resource Utilization

The resource utilization for table CONTACT_SCHEDULES is expected to remain
small (probably only 48 hours worth of live supports for each supported mission).

3.1.1.1.5.4 Program Library

Table CONTACT_SCHEDULES is implemented in the DDS_OPS_DB schema.

3.1.1.1.6 Table DCS_CAPTURE_ACCT

3.1.1.1.6.1 Purpose

Capture Transfer System setup information is stored in table
DCS_CAPTURE_ACCT. The table lists all capture systems controlled by the
DDS.

All operators will be able to modify this table.
Requirements defined in SRS 3.1.1.2 are allocated to this table.

3.1.1.1.6.2 Development Status

Table DCS_CAPTURE_ACCT will be reused without change.

3.1.1.1.6.3 Resource Utilization

The resource utilization for table DCS_CAPTURE_ACCT is expected to remain
trivially small (only 1 record per CTS).

3.1.1.1.6.4 Program Library

Table DCS_CAPTURE_ACCT is implemented in the DDS_OPS_DB schema.

3.1.1.1.7 Table CAPT_MISSION_ACCT

3.1.1.1.7.1 Purpose

The mission(s) supported by each Capture Transfer System are defined in table
CAPT_MISSION_ACCT.

Only privileged operators will be able to modify this table.
Requirements defined in SRS 3.1.1.2.1.1 are allocated to this table.

3.1.1.1.7.2 Development Status

Table CAPT_MISSION_ACCT will be reused without change.

9/10/09 - 20 - DCS 104.4

3.1.1.1.7.3 Resource Utilization

The resource utilization for table CAPT_MISSION_ACCT is expected to remain
trivially small (only 1 record per supported mission/capture system combination).

3.1.1.1.7.4 Program Library

Table CAPT_MISSION_ACCT is implemented in the DDS_OPS_DB schema.

3.1.1.1.8 Table DCS_RAWFILE_ACCT

3.1.1.1.8.1 Purpose

The raw data files handled by DCS are listed in table DCS_RAWFILE_ACCT.
All operators will be able to modify this table.
Requirements defined in SRS 3.1.1.5 are allocated to this table.

3.1.1.1.8.2 Development Status

Table DCS_RAWFILE_ACCT will be reused without change.

3.1.1.1.8.3 Resource Utilization

The resource utilization for table DCS_RAWFILE_ACCT will be one record for each
raw file for the duration of the project. For Landsat 7, there should be an
average of 5.5 contacts per day and 4 files per contact (so, 22 files per day for at
least 3 years, or approximately 24000 records).

3.1.1.1.8.4 Program Library

Table DCS_RAWFILE_ACCT is implemented in the DDS_OPS_DB schema.

3.1.1.1.9 Table TRANSFER_ACCT

3.1.1.1.9.1 Purpose

The transfer of raw data files is tracked in table TRANSFER_ACCT.
All operators will be able to modify this table. In addition, the destination systems

will be able to update the XFER_STATUS and STATUS_DATE fields.
Requirements defined in SRS 3.1.2.4 and 3.1.2.5 are allocated to this table.

3.1.1.1.9.2 Development Status

Table TRANSFER_ACCT will be reused without change.

9/10/09 - 21 - DCS 104.4

3.1.1.1.9.3 Resource Utilization

The resource utilization for table TRANSFER_ACCT will be one record for each
destination system that will retrieve a given raw file. For Landsat 7, there will be
two destinations for the 22 files per day for at least 3 years.

3.1.1.1.9.4 Program Library

Table TRANSFER_ACCT is implemented in the DDS_OPS_DB schema.

3.1.1.1.10 Table BACKUP_ACCT

3.1.1.1.10.1 Purpose

Backup archival of raw data files is tracked in table BACKUP_ACCT.
All operators will be able to modify this table.
Requirements defined in SRS 3.2.1.2 are allocated to this table.

3.1.1.1.10.2 Development Status

Table BACKUP_ACCT will be reused without change.

3.1.1.1.10.3 Resource Utilization

Since the Backup/Archive is for non-nominal operations, the resource utilization for
table BACKUP_ACCT is expected to be reasonably small (only 1 record per file
on a DDS Backup/Archive tape).

3.1.1.1.10.4 Program Library

Table BACKUP_ACCT is implemented in the DDS_OPS_DB schema.

3.1.1.1.11 Table DCS_CONTACT_SCHED_FILES

3.1.1.1.11.1 Purpose

Contact Schedule filenames are temporarily stored in table
DCS_CONTACT_SCHED_FILES.

All operators will be able to modify this table.
Requirements defined in SRS 3.2.1.1.4 are allocated to this table.

3.1.1.1.11.2 Development Status

Table DCS_CONTACT_SCHED_FILES will be reused without change.

9/10/09 - 22 - DCS 104.4

3.1.1.1.11.3 Resource Utilization

The resource utilization for table DCS_CONTACT_SCHED_FILES is minimal. The
table is used to temporarily hold contact schedule file names for manual
schedule ingests and the ingest routine will move ingested files to a “processed”
directory, so it is expected to be trivially small (only 1 record per file in the
schedule directory).

3.1.1.1.11.4 Program Library

Table DCS_CONTACT_SCHED_FILES is implemented in the DDS_OPS_DB
schema.

3.1.1.1.12 Table DCS_CONFIGURATION

3.1.1.1.12.1 Purpose

DCS configuration parameters are stored in table DCS_CONFIGURATION.
All operators will be able to modify this table.
Requirements defined in SRS 3.2.1.1 are allocated to this table.

3.1.1.1.12.2 Development Status

Table DCS_CONFIGURATION will be reused without change.

3.1.1.1.12.3 Resource Utilization

The resource utilization for table DCS_CONFIGURATION is trivial (only 1 record of
DDS configuration options).

3.1.1.1.12.4 Program Library

Table DCS_CONFIGURATION is implemented in the DDS_OPS_DB schema.

3.1.1.1.13 Table TEMP_CTS_FILES

3.1.1.1.13.1 Purpose

CTS file information is temporarily stored in table TEMP_CTS_FILES. The table
allows the GUI to access the list for operator selection for manual file transfer.

All operators will be able to modify this table.
Requirements defined in DCS SRS 3.2.1.6.12 are allocated to this table.

3.1.1.1.13.2 Development Status

Table TEMP_CTS_FILES will be new development.

9/10/09 - 23 - DCS 104.4

3.1.1.1.13.3 Resource Utilization

The resource utilization for table TEMP_CTS_FILES is trivial (only 1 record of file
information for each file currently on-line on a given CTS).

3.1.1.1.13.4 Program Library

Table TEMP_CTS_FILES will be implemented in the DDS_OPS_DB schema.

3.1.1.2 Monitor and Control Component

3.1.1.2.1 mac_DDS

mac_DDS

Start Backup Start Delete

DCS_CONFIGURATION

Start Schedule Ingest

Check_for_xfers
Check_disk_spaceCheck_for_schedule

DCS_RAWFILE_ACCT

TRANSFER_ACCT Start Delete

Start GUI

BACKUP_ACCT

Figure 3-3 mac_DDS

3.1.1.2.1.1 Purpose

The mac_DDS process runs on the DDS. The purpose of the mac_DDS process is
to automatically start the mac_DDS_gui, the mac_IngestContact,
mac_BackupArchive, and the mac_Delete processes at appropriate times (and
depending on configuration options).

Figure 3-3shows the software units comprising mac_DDS. mac_DDS will have
three main functions:

9/10/09 - 24 - DCS 104.4

• Check_for_schedule – if enabled, the Check_for_schedule function will
periodically check for new contact schedule files. When a new file is
detected, the routine will start an automatic ingest of the contact schedule
(see 3.1.1.2.2). This function will be implemented in module mac_DDS.c

• Check_disk_space – if enabled, the Check_disk_space function will
periodically check the local disk available space. When the available space
falls below an operator tunable threshold, the module will automatically start
backup (see 3.1.1.2.1.3) and file deletion (see 3.1.1.3.1.3) routines to
prevent the local disk from overfilling.

• Check_for_xfers – if enabled, will check the database for completed raw
file transfers. When a raw file has successfully been transferred to all
destinations, the function will automatically start file deletion.

All of the requirements delineated in paragraph 3.2.1.1 of the SRS are allocated to
the mac_DDS process.

3.1.1.2.1.2 Development Status

CCR 2135 – mac_DDS polling processes will be updated to connect to the
database before the looping and not connect/disconnect within the loop.

3.1.1.2.1.3 Resource Utilization

The resource utilization for mac_DDS.c is not a concern.

3.1.1.2.1.4 Program Library

Module mac_DDS.c will be implemented as a stand-alone process.
Database access routines are in the MACS database library for retrieving and

updating information in the database.

9/10/09 - 25 - DCS 104.4

id Contact Schedule file

id Support Schedule File

New
Schedule

mac_GenSuptSchedule

mac_IngestSchedule

ftp
Start ftp

Send Schedule

rsh
start rsh

id

MOC

start schedule ingest

CONTACT_SCHEDULE

DCS_CAPTURE_ACCT

id

DCS-Capture
Transfer

Subsystem

Send Schedule

Figure 3-4 mac_IngestContact and mac_GenSuptSchedule

3.1.1.2.2 mac_IngestContact

3.1.1.2.2.1 Purpose

The mac_IngestContact process runs on the DDS Subsystem. The purpose of the
mac_IngestContact process is to read contact schedule files and insert the
information into the database.

See Figure 3-4 for a top-level context diagram of mac_IngestContact.
The requirements of paragraphs 3.2.1.1.1-3.2.1.1.4 of the SRS are allocated to the

mac_IngestContact process.
After ingest, mac_IngestContact executes mac_GenSuptSchedule to deliver the

updated CTS-specific support schedules to the affected CTS’s.

3.1.1.2.2.2 Development Status

The mac_IngestContact process will be reused without change.

3.1.1.2.2.3 Resource Utilization

The resource utilization for mac_IngestContact is not a concern.

9/10/09 - 26 - DCS 104.4

3.1.1.2.2.4 Program Library

Module mac_IngestContact is implemented as a stand-alone process.

3.1.1.2.3 mac_GenSuptSchedule

3.1.1.2.3.1 Purpose

The mac_GenSuptSchedule process runs on the DDS Subsystem. The purpose of
the mac_GenSuptSchedule process is to create and send a support schedule to
a Capture Transfer Subsystem.

See Figure 3-4 for a top-level context diagram of mac_GenSuptSchedule.
The requirements of paragraph 3.2.1.1.5 of the SRS are allocated to the

mac_GenSuptSchedule process.

3.1.1.2.3.2 Development Status

The mac_GenSuptSchedule process will be reused without change.

3.1.1.2.3.3 Resource Utilization

The resource utilization for mac_GenSuptSchedule.c is not a concern.

3.1.1.2.3.4 Program Library

Module mac_GenSuptSchedule.c is implemented as a stand-alone process.

3.1.1.2.4 mac_InsertFileNames

3.1.1.2.4.1 Purpose

The mac_InsertFileNames process runs on the DDS Subsystem. The purpose of
the mac_InsertFileNames process is to temporarily insert contact schedule
filenames into the database for manual selection and ingest via the GUI.

The requirements of paragraph 3.2.1.1.4 of the SRS are allocated to the
mac_InsertFileNames process.

3.1.1.2.4.2 Development Status

The mac_InsertFileNames process will be reused without change.

3.1.1.2.4.3 Resource Utilization

The resource utilization for mac_InsertFileNames.c is not a concern.

3.1.1.2.4.4 Program Library

Module mac_InsertFileNames.c is implemented as a stand-alone process.

9/10/09 - 27 - DCS 104.4

3.1.1.2.5 mac_SendSetup

id Setup Information

ftp
Start ftp

mac_SendSetup

rsh
start rsh

DCS_CAPTURE_ACCT

Send Setup

id

DCS-Capture
Transfer

Subsystem

id Mission Info

ftp

New Setup

MISSION_ACCT

Start ftp

Figure 3-5 mac_SendSetup

3.1.1.2.5.1 Purpose

The mac_SendSetup process runs on the DDS. The purpose of the
mac_SendSetup process is to create CTS setup information files and send them
to the CTS.

Refer to Figure 3-5 for a top-level context diagram of mac_SendSetup.
The requirements of paragraph 3.2.1.1.7 of the SRS are allocated to the

mac_SendSetup process.

3.1.1.2.5.2 Development Status

The mac_SendSetup process will be updated to create and send the Mission
Information file and to retrieve the tape drive setting from the database.

3.1.1.2.5.3 Resource Utilization

The resource utilization for mac_SendSetup.c is not a concern.

3.1.1.2.5.4 Program Library

Module mac_SendSetup.c is implemented as a stand-alone process.

9/10/09 - 28 - DCS 104.4

id Manual Capture parms

Start Manual Capture

ftp
Start ftp

mac_ManCapture

rsh
start rsh

id

DCS-Capture
Transfer

Subsystem

Figure 3-6 mac_ManCapture

3.1.1.2.6 mac_ManCapture

3.1.1.2.6.1 Purpose

The mac_ManCapture process runs on the DDS Subsystem. The purpose of the
mac_ManCapture process is to create a CTS Manual Capture Parameter file,
send it to a CTS and signal the CTS to perform the manual capture.

See Figure 3-6 for a top-level context diagram of mac_ManCapture.
The requirements of paragraphs 3.2.1.1.6 and 3.2.1.1.8 of the SRS are allocated to

the mac_ManCapture process.

3.1.1.2.6.2 Development Status

The mac_ManCapture process will be updated to include the following changes:

• CCR 1645 -- Dual Downlinks from Polar Tapes on the Same CTS
o An optional “channel number” will be added to the command line

parameters.
o The “channel number”, if provideded, will be added to the Manual

Capture Parameter file. This channel number will be optional to
override the CTS’s default calculation of a channel number.

NOTE: The “channel number” is used to uniquely identify different files in
a dual downlink. Each CTS calculates a unique channel id based on the
CTS’s host name. For live downlinks, each downlink is normally routed to
a different CTS; however, for manual captures from wideband tape, it is
sometimes desirable to capture both downlinks on one CTS.

3.1.1.2.6.3 Resource Utilization

The resource utilization for mac_ManCapture is not a concern.

9/10/09 - 29 - DCS 104.4

3.1.1.2.6.4 Program Library

Module mac_ManCapture is implemented as a stand-alone process.

id Raw File List

list files

mac_GetCTSFileList

rsh
start rsh

id

DCS-Capture
Transfer

Subsystem

TEMP_CTS_FILES

Figure 3-7 mac_GetCTSFileList

3.1.1.2.7 mac_GetCTSFileList

3.1.1.2.7.1 Purpose

The mac_GetCTSFileList process runs on the DDS Subsystem. The purpose of
the mac_GetCTSFileList process is to populate table TEMP_CTS_FILES with
file names on a given CTS.

See Figure 3-6 for a top-level context diagram of mac_GetCTSFileList.
The requirements of paragraph 3.2.1.6.12 of the SRS are allocated to the

mac_GetCTSFileList process.

3.1.1.2.7.2 Development Status

The mac_GetCTSFileList process will be new development.

3.1.1.2.7.3 Resource Utilization

The resource utilization for mac_GetCTSFileList is not a concern.

3.1.1.2.7.4 Program Library

Module mac_GetCTSFileList is implemented as a stand-alone process.

9/10/09 - 30 - DCS 104.4

id Raw Data File

id Accounting File

mac_DeleteRawFiles

delete

Start MAC Delete

id Tape Id

label

rdc_GenStackedLabel

rdc_Save

tar

id tape header

Start Tar

Start Backup

Start Label

BACKUP_ACCT

DCS_RAWFILE_ACCT

Start Label

TRANSFER_ACCT

mac_BackupArchive

Start Save

rdc_DeleteFiles

Start RDC Delete

Figure 3-8 mac_BackupArchive and mac_DeleteRawFiles

3.1.1.3 Back-up Archive Component

3.1.1.3.1 mac_BackupArchive

3.1.1.3.1.1 Purpose

The mac_BackupArchive process runs on the DDS Subsystem. The purpose of
the mac_BackupArchive process is to copy on-line raw files to tape and delete
the on-line file, along with the appropriate updates to the database records.

See Figure 3-8 for a top-level context diagram of mac_BackupArchive.

3.1.1.3.1.2 Development Status

The mac_BackupArchive will be reused without modification.

3.1.1.3.1.3 Resource Utilization

The resource utilization for mac_BackupArchive is not a concern.

9/10/09 - 31 - DCS 104.4

3.1.1.3.1.4 Program Library

Module mac_BackupArchive is implemented as a stand-alone process.
Database access routines are needed in the MACS database library for performing

the needed updates.

3.1.1.4 Delete Raw Files Component (DDS)

3.1.1.4.1 mac_DeleteRawFiles

3.1.1.4.1.1 Purpose

The mac_DeleteRawFiles process will run on the DDS Subsystem. The purpose of
the mac_DeleteRawFiles process is to delete raw files from on-line storage,
along with the appropriate updates to the database records.

See Figure 3-8 for a top-level context diagram of mac_DeleteRawFiles.

3.1.1.4.1.2 Development Status

The mac_DeleteRawFiles will be reused without changes

3.1.1.4.1.3 Resource Utilization

The resource utilization for mac_DeleteRawFiles is not a concern.

3.1.1.4.1.4 Program Library

Module mac_DeleteRawFiles is implemented as a stand-alone process.
Database access routines are needed in the MACS database library for performing

the needed updates.

9/10/09 - 32 - DCS 104.4

Raw Data File

Accounting File

New File

mac_Restage

tar

Start Tar

tape header

mac_UpdDCSAcct

New File

DCS_RAWFILE_ACCT

TRANSFER_ACCT

BACKUP_ACCT

DCS-Capture
Transfer

Subsystem

ROUTING_ACCT DESTINATION_ACCT

Figure 3-9 mac_Restage and mac_UpdDCSAcct

3.1.1.5 Restage from Tape Component

3.1.1.5.1 mac_Restage

3.1.1.5.1.1 Purpose

The mac_Restage process runs on the DDS Subsystem. The purpose of the
mac_Restage process is to copy raw files from DCS Backup/Archive tapes onto
the local disk, along with the appropriate updates to the database records.

In order to ingest files archived on the CTS subsystems, which will be new data
files to the DCS database, the process will have the ability to copy all files on a
tape and register them. In order to restage a selected file (i.e. one file from a
tape of registered files) the process will have the ability to copy just one selected
file.

See Figure 3-9 for a top-level context diagram for mac_Restage.
All of the requirements delineated in paragraph 3.2.1.3 of the SRS is allocated to

the mac_Restage process.

9/10/09 - 33 - DCS 104.4

3.1.1.5.1.2 Development Status

CCR1678, mac_Restage will be updated to restage files to
$DDS_RAWFILE_PATH/restage. Then when all of the restaged files are
completely on-line, the files will be moved to the $DDS_RAWFILE_PATH
directory to be registered into the DCS database.

3.1.1.5.1.3 Resource Utilization

The resource utilization for mac_Restage is not a concern.

3.1.1.5.1.4 Program Library

Module mac_Restage is implemented as a stand-alone process.

3.1.1.5.2 mac_UpdDCSAcct

3.1.1.5.2.1 Purpose

The mac_UpdDCSAcct process runs on the DDS Subsystem. The purpose of the
mac_UpdDCSAcct process is to register raw files into the database records.

See Figure 3-9 for a top-level context diagram for mac_UpdDCSAcct.
Portions of the requirements delineated in paragraph 3.2.1.3 of the SRS are

allocated to the mac_UpdDCSAcct process.

3.1.1.5.2.2 Development Status

CCR #1653, mac_UpdDCSAcct will be updated to check validity of the accounting
file info (especially the file size) before ingest.

CCR #2076, mac_UpdDCSAcct will be updated to check for any XFER_STATUS =
‘PROGRESS’ before ingesting and moving a file.

CCR 2006 – mac_UpdDCSAcct will be updated to use an integer number of bytes
for file size (.acct files will still use MB for backward compatibility).

3.1.1.5.2.3 Resource Utilization

The resource utilization for mac_UpdDCSAcct is not a concern.

3.1.1.5.2.4 Program Library

Module mac_UpdDCSAcct is implemented as a stand-alone process.

9/10/09 - 34 - DCS 104.4

3.1.1.6 Journaling Component

3.1.1.6.1 mac_JournalFileEntry

3.1.1.6.1.1 Purpose

The mac_JournalFileEntry process runs on the DDS Subsystem. The purpose of
the mac_JournalFileEntry process is to allow operators to insert custom journal
messages into the DCS journals.

The process will insert the operator-supplied message into the DCS journal file.
All of the requirements delineated in paragraph 3.2.1.7 of the SRS are allocated to

the mac_JournalFileEntry process.

3.1.1.6.1.2 Development Status

The mac_JournalFileEntry will be reused without changes.

3.1.1.6.1.3 Resource Utilization

The resource utilization for mac_JournalFileEntry is not a concern.

3.1.1.6.1.4 Program Library

Module mac_JournalFileEntry is implemented as a stand-alone process.

3.1.1.7 Graphical User Interface Component

The mac_DDS_gui windows will run on the DDS Subsystem. Figure 3-10, Figure
3-11 and Figure 3-12 show the software units comprising mac_DDS_gui. The
green boxes represent individual forms (or windows) displayed on the DDS.

In Figure 3-10 the lines from the main window (mac_ui_DDS_main) to the other
windows represent the main menu Setup actions that activate the child windows.
Figure 3-11 shows the main menu Control actions.

In Figure 3-12 the lines from the main window (mac_ui_DDS_main) to the other
windows represent the main window button actions that activate the child
windows. The main window buttons perform actions for the selected raw data
file.

9/10/09 - 35 - DCS 104.4

mac_ui_DDS_main

DCS_CONFIGURATION

[SETUP->Ingest Contact Schedule]

mac_ui_Edit_Routing

[SETUP->Routing Setup]

ROUTING_ACCT

[SETUP->View/Edit Contact Schedules]

mac_ui_Edit_Missions

[SETUP->Mission Setup]

MISSION_ACCT

mac_ui_dest_config

[SETUP->Destination Setup]

DESTINATION_ACCT DCS_CAPTURE_ACCT

mac_ui_edit_capt_parms

Send Setup

mac_ui_edit_cont_sched

CONTACT_SCHEDULE

Send Schedule

mac_ui_ingest_cont_sched

start schedule ingest

mac_ui_DDS_config

[SETUP->DDS Options]

[SETUP->View/Edit Capture Paramaters]

mac_InsertFileNames

DCS_CONTACT_SCHED_FILES

DCS_RAWFILE_ACCT

Figure 3-10 mac_DDS_gui Setup Menu Activations

9/10/09 - 36 - DCS 104.4

mac_ui_DDS_main

DCS_CONFIGURATION

[CONTROL->Generate Tape Label]

DCS_CAPTURE_ACCT

mac_ui_manual_capt

[CONTROL->Manual Capture]

Start
Capture

[CONTROL->Restage]

mac_ui_gen_tape_label

Start rdc_GenStackedLabel

mac_ui_start_restage_

Start mac_Restage

Stop
Capture

mac_ui_trans_cts_file

start rdc_Transfer

mac_GetCTSFileList

TEMP_CTS_FILES

[CONTROL->Transfer File]

mac_ui_init_tape

[CONTROL->Initialize Tape]

mac_GetTapeDrives

DCS_TAPEDRIVE_INFO

start rdc_InitTape

[CONTROL->Inistialize Tape]

mac_ui_init_tapel

Start rdc_InitTape

Figure 3-11 mac_DDS_gui Control Menu Activations

9/10/09 - 37 - DCS 104.4

mac_ui_DDS_main

[Backup]

[Delete][Restage]

DCS_RAWFILE_ACCT
TRANSFER_ACCT

mac_ui_rawfile_details[Information]

mac_ui_start_restagel

Start mac_Restage

mac_ui_start_copy_to_tape

Start mac_Restage

mac_ui_start_restage_a;;l

Start mac_DeleteRawFilese

Figure 3-12 mac_DDS_gui Button Activations

9/10/09 - 38 - DCS 104.4

3.1.1.7.1 mac_ui_DDS_main

Figure 3-13 DCS Main Window

Figure 3-13 shows the mac_ui_DDS_main window, which is titled “Data Capture
System”.

3.1.1.7.1.1 Purpose

The purpose of the mac_ui_DDS_main window is to provide operations with a
graphical user interface for setup and control of DCS operations. Summary
status information of active raw files is presented in the main window with
additional buttons for common actions. Additional setup and control is
implemented via a drop-down menu at the top of the window.

The window displays:

• File Name – filename of captured file. If the file is active the background
color will be based on the priority. The currently selected file has a black
background with yellow text color scheme.
If the file is inactive, the background color will be gray. Files will be listed in
“queue” order (i.e. highest priority files from oldest to youngest, then next
highest priority from oldest to youngest, etc. down to the inactive files). This

9/10/09 - 39 - DCS 104.4

value is display-only and is retrieved from field RAW_DATA_FILE_NAME of
table DCS_RAWFILE_ACCT.

Note: “inactive” means the file is no longer on-line and no longer in the DCS
Backup Archive.

• Vol (Mb) – file volume (size). Color scheme will follow the File Name box.
This value is display-only and is retrieved from field FILE_SIZE of table
DCS_RAWFILE_ACCT.

• Data Type – raw data file type (e.g. NOM for Nominal Data, VAL for
Validation Data, EXC for Exchange Data).

• Priority – handling priority of file. Color scheme will follow the File Name
box. This is a drop-down list that will allow updating the PRIORITY field of
table DCS_RAWFILE_ACCT.

• Archived – delivery status of the file to archiving system(s). Yes will indicate
that all intended archiving systems have successfully retrieved the file. No
will indicate that no archiving systems have retrieved it. Par will indicate that
some archiving systems have retrieved it (occurs only when more than one
processing system is defined in the database). If any archiving system has
failed to retrieve the file, the background will be red, the color scheme will
follow the Raw Data File Name field. This value is display-only and is
summary information retrieved from field XFER_STATUS of table
TRANSFER_ACCT (and ARCHIVE_FLAG of DESTINATION_ACCT).

• Processed – delivery status of the file to processing system(s). Yes will
indicate all intended processing systems have successfully retrieved the file.
No will indicate that no processing systems have retrieved it. Par will
indicate that some processing systems have retrieved it (occurs only when
more than one processing system is defined in the database). If any
processing system has failed to retrieve the file, the background will be red,
otherwise the color scheme will follow the Raw Data File Name field. This
value is display-only and is summary information retrieved from field
XFER_STATUS of table TRANSFER_ACCT (and ARCHIVE_FLAG of
DESTINATION_ACCT).

The Information button will display the window shown in Figure 3-25, which gives
full details about the selected file.

The Delete button will display a file deletion confirmation window for the selected
file, and then execute file deletion (see section 3.1.1.4)

The Backup button will display a Backup/Archive file confirmation window for the
selected file, and then execute backup/archive (see section 3.1.1.3).

The Restage button will display a Restage file confirmation window for the selected
file (see Figure 3-21 Start Restage), and then execute restage for the file (see
section 3.1.1.5).

9/10/09 - 40 - DCS 104.4

The Find File button will refresh the main window with files that have substrings
matching the search window string.

The Show Inactive checkbox, when checked, will refresh the main window to
display all files, including inactive files. When unchecked, it will refresh the main
window to only display active files.

All of the requirements delineated in paragraph 3.2.1.6 of the SRS are allocated to
the mac_ui_DDS_main.

3.1.1.7.1.2 Development Status

The mac_ui_DDS_main window was updated for DCS 1.2 with the following CCRs:

• CCR 1666 - Find File for DCS_GUI
An edit box and Find button will be added to narrow the listing to files
matching a pattern.

• CCR 1678 – Restage clarification
A phrase such as “File Actions” will be added above the file action buttons
(Information, Delete, Backup, and Restage). Restage in the Control menu
will be changed from “Restage” to “Ingest Tape”.

• CCR 1662 -- Change to DCS_GUI -- make selected file stand out better.
The selected file will have a white background.

• CCR 1677 -- DCS GUI (icons greyed out)
A modification will be made to re-enable the buttons after they’ve been
disabled (via selecting a different file or a blank line).

3.1.1.7.1.3 Resource Utilization

The resource utilization for mac_ui_DDS_main is not a concern.

3.1.1.7.1.4 Program Library

Module mac_ui_DDS_main is implemented as a stand-alone Oracle form.

9/10/09 - 41 - DCS 104.4

3.1.1.7.2 mac_ui_edit_capt_parms

Figure 3-14 Set Capture Parameters

Figure 3-14 shows the mac_ui_edit_capt_parms window, which is titled “Set
Capture Parameters”.

3.1.1.7.2.1 Purpose

The purpose of the mac_ui_edit_capt_parms window is to provide operations with a
graphical user interface to set operational parameters for individual CTS
operations (see Table 6: DCS_CAPTURE_ACCT in Appendix A).

The Capture System drop-down box will allow selection of the individual CTS
systems defined in table DCS_CAPTURE_ACCT (field CAPT_SYS_ID).

The Software Version displays the software version number of the CTS software
(see Table 6: DCS_CAPTURE_ACCT field SOFTWARE_VER_NUM).

The IP Address edit box displays the Internet Protocol address of the DDS (see
Table 9: DCS_CONFIGURATION field DCS_HARDWARE_STRING_ID).

Comment [bjp1]: Page: 1
Need to add: suspend/isolate, sched, setup,
capture directories, delay/delay time option, ftp
login info and capture sources.

9/10/09 - 42 - DCS 104.4

The User Name edit box displays the ftp login name for the CTS file transfers (see
Table 6: DCS_CAPTURE_ACCT field USER_NAME).

The Password edit box displays the ftp login password for the CTS file transfers
(see Table 6: DCS_CAPTURE_ACCT field PASSWORD).

The Schedule Dir. edit box displays the directory to receive CTS support schedule
files (see Table 6: DCS_CAPTURE_ACCT field SCHEDULE_DIR).

The Parameter Dir. edit box displays the directory to receive CTS parameter files
(see Table 6: DCS_CAPTURE_ACCT field PARAMETER_DIR).

The Tape Drive drop-down list allows the operator to select the tape drive for
performing CTS transfers to tape (NOTE: the default selection is always the first
drive found!).

The Transfer Option drop-down list will allow selection of the
TRANSFER_OPTION field (see Table 6: DCS_CAPTURE_ACCT field
TRANSFER_OPTION for valid values).

The Idle Time specifies how much idle time before the next scheduled capture is
needed in order to start the transfer (see Table 6: DCS_CAPTURE_ACCT field
XFER_IDLE_TIME).

The Delete the raw file after transfer checkbox allows the operator to set the
DELETE_RAW_FILE field of the DCS_CAPTURE_ACCT.

The Moving Window Display edit allows the operator to set the MWD_NAME field
of the DCS_CAPTURE_ACCT.

After the options are set, clicking the OK button will cause the options to be
updated in the database and also to be sent to the corresponding CTS (see
Figure 3-5 mac_SendSetup).

Requirements delineated in paragraph 3.2.1.6.11 of the SRS are allocated to the
mac_ui_edit_capt_parms.

3.1.1.7.2.2 Development Status

The mac_ui_edit_capt_parms was updated with the following changes:

• CCR 2000 - DCS -- add capability for a CTS to back-up another CTS.
The Channel Map button was added to bring up the Capture Channel Map
window shown in Figure 3-15. This window allows assigning a permenant
channel id (aka “capture source”) to each capture device slot found in the
CTS. The Channel can be ‘0’-‘9’, or ‘*’ (which means automatic assignment
based on the CTS number, the number of capture devices found in the
system, and the number of CTS’s at the ground station). The Reset Map
button re-assigns ‘*’ for the Channel.

Comment [bjp2]: When autocapture is
separated from transfer, this parameter could
be deleted.

9/10/09 - 43 - DCS 104.4

Figure 3-15 Capture Channel Map

• CCR 2063 - CTS3 Tape Drive (tps1d4) always shows a READY status-
even with no tape in it. The current CTS tape drive setting is retrieved by
mac_ListTapeDrives and placed in the database. The
mac_ui_edit_capt_parms GUI will retrieve the current setting from the
database and display it in the Tape Drive drop-down list.

3.1.1.7.2.3 Resource Utilization

The resource utilization for mac_ui_edit_capt_parms is not a concern.

3.1.1.7.2.4 Program Library

Module mac_ui_edit_capt_parms will be implemented as a stand-alone Oracle
form.

3.1.1.7.3 mac_ui_edit_cont_sched

Figure 3-16 Edit Contact Schedules shows the Edit Contact Schedules form. Figure
3-10 shows how this form is activated.

9/10/09 - 44 - DCS 104.4

Figure 3-16 Edit Contact Schedules

3.1.1.7.3.1 Purpose

The purpose of the mac_ui_edit_cont_sched window is to provide operations with a
graphical user interface for editing mission contact schedules.

The Scheduled Start Time and Scheduled Stop Time fields display the expected
beginning and ending times for automated wideband raw data capture (fields
SCHEDULED_START_TIME and SCHEDULED_STOP_TIME of table
CONTACT_SCHEDULES).

The Mission ID is a drop-down list to select the contact schedule for a mission.
The default mission displayed is the alphabetically first mission of all missions of
the highest priority.

The Priority field is a drop-down list that displays the assigned priority for the
capture. Operations can modify this value before a scheduled pass for the
captured files to receive a different priority.

NOTE: When a contact schedule file is ingested, the default priority
defined in table MISSION_ACCT is given to all contacts. If an upcoming
pass defined in the database was modified to have a different priority, a
warning message will be logged during ingest indicating that the pass will
need to be updated by the operator. Also, when the contact information is

9/10/09 - 45 - DCS 104.4

sent to the capture system, only the earliest AOS, the latest LOS times,
and the highest priority is used for all capture systems.

Requirements delineated in paragraph 3.2.1.6.5 of the SRS are allocated to the
mac_ui_edit_cont_sched.

3.1.1.7.3.2 Development Status

The mac_ui_edit_cont_sched is reused without change.

3.1.1.7.3.3 Resource Utilization

The resource utilization for mac_ui_edit_cont_sched is not a concern.

3.1.1.7.3.4 Program Library

Module mac_ui_DDS_edit_cont_sched is implemented as a stand-alone Oracle
form.

3.1.1.7.4 mac_ui_gen_tape_label

Figure 3-17 shows the Generate Tape Label form. Figure 3-11 shows how this form
is activated.

Figure 3-17 Generate Tape Label

3.1.1.7.4.1 Purpose

The purpose of the mac_ui_gen_tape_label window is to provide operations with a
graphical user interface for creating Backup/Archive tape labels for replacement
of labels lost or damaged

The System drop-down list will allow selection of the system id (DDS or one of the
CTSs) where the tape was initialized into the DCS Backup/Archive. The values
used in this drop-down list are defined as DCS_HW_STRING_ID in table
DCS_CONFIGURATION and CAPT_SYS_ID in table DCS_CAPTURE_ACCT.

.

The Tape ID edit box will allow the operator to type in the tape identifier.

9/10/09 - 46 - DCS 104.4

This module is derived from requirements delineated in paragraph 3.2.1.6.8 of the
SRS.

3.1.1.7.4.2 Development Status

The mac_ui_gen_tape_label is reused without change.

3.1.1.7.4.3 Resource Utilization

The resource utilization for mac_ui_gen_tape_label is not a concern.

3.1.1.7.4.4 Program Library

Module mac_ui_gen_tape_label is implemented as a stand-alone Oracle form.

3.1.1.7.5 mac_ui_ingest_cont_sched

Figure 3-18 shows the Ingest Contact Schedules form. Figure 3-10 shows how this
form is activated.

Note that before this form is activated, process mac_InsertFileNames is executed
to populate table DCS_CONTACT_SCHED_FILES.

Figure 3-18 Ingest Contact Schedules

3.1.1.7.5.1 Purpose

The purpose of the mac_ui_ingest_cont_sched window is to provide operations
with a graphical user interface for manually ingesting contact schedule files.

9/10/09 - 47 - DCS 104.4

The files listed are from the FILE_NAME field of table
DCS_CONTACT_SCHED_FILES.

Requirements delineated in paragraph 3.2.1.1.4 of the SRS are allocated to the
mac_ui_ingest_cont_sched.

3.1.1.7.5.2 Development Status

The mac_ui_ingest_cont_sched will be reused without change.

3.1.1.7.5.3 Resource Utilization

The resource utilization for mac_ui_ingest_cont_sched is not a concern.

3.1.1.7.5.4 Program Library

Module mac_ui_ingest_cont_sched is implemented as a stand-alone Oracle form.

3.1.1.7.6 mac_ui_manual_capt

Figure 3-19 Manual Data Capture shows the Manual Data Capture form. Figure
3-10 shows how this form is activated.

9/10/09 - 48 - DCS 104.4

Figure 3-19 Manual Data Capture

3.1.1.7.6.1 Purpose

The purpose of the mac_ui_manual_capt window is to provide operations with a
graphical user interface for performing manual raw data captures.

The operator will be able to select which Capture System is to perform the capture
(values are obtained from table DCS_CAPTURE_ACCT), the rawfile Priority,
the Mission ID (values are obtained from table MISSION_ACCT), and the
Duration of capture.

The stations in the Station of Origin drop-down list are defined in table
MISSION_STATION_ACCT.

The Station Downlink Times represent the AOS and LOS times for the downlink
at the station.

9/10/09 - 49 - DCS 104.4

The Recapture checkbox allows the operator to enter duplicate Start Time /
Station / Capture System (which defines the Capture Source). Without this
setting, DCS will not allow duplicate information. With this setting, DCS will allow
the information to be used for a re-capture.

The Dual Downlink checkbox allows the operator to enter duplicate Start Time /
Station / Capture System (which normally defines the Capture Source).
Without this setting, DCS will not allow duplicate information. With this setting,
DCS will allow the information except that DCS will generate a unique Capture
Source to be used for manual captures for dual downlinks.

The Delete File checkbox allows the operator to stop a manual capture and
immediately delete the raw file (essential abort the capture).

The Start button executes the capture on the CTS, hides the Start button, and
displays the Stop button.

The Stop button terminates the capture on the CTS, hides the Stop button, and
displays the Start button.

The Cancel button closes the Manual Data Capture window with no action.
Requirements delineated in paragraph 3.2.1.1.6 of the SRS are allocated to the

mac_ui_start_capt.

3.1.1.7.6.2 Development Status

The mac_ui_manual_capt window was updated from mac_ui_start_capt with the
following changes:

• CCR 1645 – Dual Downlinks from Polar Tapes on the Same CTS
o the database is queried for previous captures that have the same

Capture System, Mission Id, Station of Origin, and Start Time (year,
day, and hour).

o If duplicates exist, the operator is notified to use the Recapture or
Dual Downlink buttons.

• CCR 1660 -- START and STOP CAPTURE GUI on DCS_GUI to be
combined to 1 function

o the GUI form name was changed to “Manual Data Capture” (the
“Control” menu was changed from “Start Capture” to “Manual
Capture”, “Stop Capture” on menu was removed).

o the OK button was changed to START and the button does not
close the window.

o A STOP button was added to perform a normal stop capture (stop
capture and transfer file).

• CCR 1661 -- DCS manual capture "DO NOT TRANSFER" functionality
changes.

9/10/09 - 50 - DCS 104.4

o The STOP button was augmented to abort capture if the Delete File
checkbox is checked.

3.1.1.7.6.3 Resource Utilization

The resource utilization for mac_ui_start_capt is not a concern.

3.1.1.7.6.4 Program Library

Module mac_ui_start_capt is implemented as a stand-alone Oracle form.

3.1.1.7.7 mac_ui_start_copy_to_tape

Figure 3-20 shows the Start Copy to Tape form. Figure 3-10 shows how this form is
activated.

Figure 3-20 Start Copy to Tape

3.1.1.7.7.1 Purpose

The purpose of the mac_ui_start_copy_to_tape window is to provide operations
with a graphical user interface for performing Backup/Archive of selected raw
data files.

9/10/09 - 51 - DCS 104.4

The Select Tape Drive scrollbox displays available tape drives and the
corresponding status.

If the Check Tape Date checkbox is checked the Backup/Archive function will be
invoked with the check tape date option.

Requirements delineated in paragraph 3.2.1.6.8 of the SRS are allocated to the
mac_ui_start_copy_to_tape.

3.1.1.7.7.2 Development Status

The mac_ui_start_copy_to_tape window will be reused without change.

3.1.1.7.7.3 Resource Utilization

The resource utilization for mac_ui_start_copy_to_tape is not a concern.

3.1.1.7.7.4 Program Library

Module mac_ui_start_copy_to_tape is implemented as a stand-alone Oracle form.

3.1.1.7.8 mac_ui_start_restage

Figure 3-21 shows the Start Restage form. Figure 3-10 shows how this form is
activated.

Figure 3-21 Start Restage

3.1.1.7.8.1 Purpose

The purpose of the mac_ui_start_restage window is to provide operations with a
graphical user interface that will identify the tape needed for restaging a
particular raw data file from tape. The raw file will be selected on the main
window, and then RESTAGE button clicked. When the button is clicked, the

9/10/09 - 52 - DCS 104.4

Start Restage window will appear with the filename and tape-id (value is
obtained from table BACKUP_ACCT) displayed.

NOTE: if the operator selects [Control->Ingest Tape] from the main
menu, all of the files on the currently mounted tape will be ingested.

Requirements delineated in paragraph 3.2.1.6.9 of the SRS are allocated to the
mac_ui_start_restage window.

3.1.1.7.8.2 Development Status

The mac_ui_start_restage window was reused without change.

3.1.1.7.8.3 Resource Utilization

The resource utilization for mac_ui_start_restage is not a concern.

3.1.1.7.8.4 Program Library

Module mac_ui_start_restage is implemented as a stand-alone Oracle form.

3.1.1.7.9 mac_ui_DDS_config

Figure 3-22 DDS Configuration GUI shows the DDS Configuration GUI form. Figure
3-10 shows how this form is activated.

Comment [bjp3]: This form should have had
tape device selection added.

9/10/09 - 53 - DCS 104.4

Figure 3-22 DDS Configuration GUI

3.1.1.7.9.1 Purpose

The purpose of the mac_ui_DDS_config window is to provide operations with a
graphical user interface that will allow configuration of DDS runtime parameters.

The GUI modifies table DCS_CONFIGURATION.
Requirements delineated in paragraph 3.2.1.1 of the SRS are allocated to the

mac_ui_DDS_config window.

3.1.1.7.9.2 Development Status

The mac_ui_DDS_config window was reused without change.

3.1.1.7.9.3 Resource Utilization

The resource utilization for mac_ui_DDS_config is not a concern.

3.1.1.7.9.4 Program Library

Module mac_ui_DDS_config is implemented as a stand-alone Oracle form.

9/10/09 - 54 - DCS 104.4

3.1.1.7.10 mac_ui_mission_config

Figure 3-23 Mission Configuration GUI shows the Set Mission Parameters GUI
form. Figure 3-10 shows how this form is activated.

Figure 3-23 Mission Configuration GUI

3.1.1.7.10.1 Purpose

The purpose of the mac_ui_mission_config window is to provide operations with a
graphical user interface that will allow creation and configuration of DCS
supported missions. Items that can be set from this form include:

• Mission Identifier – unique identifier for a mission (see Table 1:
MISSION_ACCT).

• Mission Name – full name of the mission (see Table 1: MISSION_ACCT).
• Data Type – unique identifier for data type (see Table 1: MISSION_ACCT).
• Data Type Description – description of data type.
• Default Priority – default priority for mission (see Table 1:

MISSION_ACCT).
• Raw Data Path – DDS directory for mission raw data (see Table 1:

MISSION_ACCT).
• Station Id(s) – ground station identifiers for mission (see Table 2:

MISSION_STATION_ACCT).

9/10/09 - 55 - DCS 104.4

• Capture System(s) – Capture/Transfer Subsystem identifiers for the
mission (see Table 7: CAPTURE_MISSION_ACCT).

• Destination System(s) – destination system identifiers for the mission (see
Table 4: ROUTING_ACCT).

• Initial Xfer Status – the initial value for Xfer_Status.

Requirements delineated in paragraph 3.1.2.1 of the SRS are allocated to the
mac_ui_mission_config window.

3.1.1.7.10.2 Development Status

The mac_ui_mission_config window was updated for CCR 1646 & CCR 1904.

3.1.1.7.10.3 Resource Utilization

The resource utilization for mac_ui_mission_config is not a concern.

3.1.1.7.10.4 Program Library

Module mac_ui_mission_config is implemented as a stand-alone Oracle form.

3.1.1.7.11 mac_ui_dest_config

Figure 3-24 shows the Destination System Configuration GUI form. Figure 3-10
shows how this form is activated.

Figure 3-24 Destination System Configuration GUI

3.1.1.7.11.1 Purpose

The purpose of the mac_ui_dest_config window is to provide operations with a
graphical user interface that will allow creation and configuration of DCS
supported mission-defined raw data destination system.

9/10/09 - 56 - DCS 104.4

The GUI modifies values in table DESTINATION_ACCT.
Requirements delineated in paragraph 3.1.2.2 of the SRS are allocated to the

mac_ui_dest_config window.

3.1.1.7.11.2 Development Status

The mac_ui_dest_config window was reused without change.

3.1.1.7.11.3 Resource Utilization

The resource utilization for mac_ui_dest_config is not a concern.

3.1.1.7.11.4 Program Library

Module mac_ui_dest_config is implemented as a stand-alone Oracle form.

3.1.1.7.12 mac_ui_rawfile_details

Figure 3-25 shows the Raw File Details GUI form. Figure 3-10 shows how this form
is activated.

9/10/09 - 57 - DCS 104.4

Figure 3-25 Raw File Details GUI

3.1.1.7.12.1 Purpose

The purpose of the mac_ui_rawfile_detail window is to provide operations with a
graphical user interface that will allow reviewing/updating raw file detailed
information.

Fields that are not modifiable are shown in gray. Values are obtained from table
DCS_RAWFILE_ACCT, BACKUP_ACCT, and TRANSFER_ACCT.

Requirements delineated in paragraph 3.1.1.5, 3.1.2.4, and 3.1.2.5 of the SRS are
allocated to the mac_ui_rawfile_detail window.

3.1.1.7.12.2 Development Status

The mac_ui_rawfile_detail window was updated as follows:

9/10/09 - 58 - DCS 104.4

• CCR 1943 – Ready, Hold, and Queue buttons are enabled even when the
Status is ‘PROGRESS’ if the user is DCS_MANAGER. This allows DCS
operations managers to ‘take back’ control of a file that a destination system
has taken control of and subsequently cannot handle.

3.1.1.7.12.3 Resource Utilization

The resource utilization for mac_ui_rawfile_detail is not a concern.

3.1.1.7.12.4 Program Library

Module mac_ui_rawfile_detail is implemented as a stand-alone Oracle form.

3.1.1.7.13 mac_ui_xfer_history

Figure 3-25 shows the Transfer History GUI form. Figure 3-10 shows how this form
is activated.

Figure 3-26 Transfer History GUI

3.1.1.7.13.1 Purpose

The purpose of the mac_ui_xfer_history window is to provide operations with a
graphical user interface that will allow reviewing previous transfer success and
failures for a file to a particular destination.

Values are obtained from table TRANSFER_ACCT_ARCHIVE.
Requirements delineated in paragraph 3.1.1.5, 3.1.2.4, and 3.1.2.5 of the SRS are

allocated to the mac_ui_rawfile_detail window.

9/10/09 - 59 - DCS 104.4

3.1.1.7.13.2 Development Status

The mac_ui_xfer_history window is new for DCS 1.2.

3.1.1.7.13.3 Resource Utilization

The resource utilization for mac_ui_xfer_history is not a concern.

3.1.1.7.13.4 Program Library

3.1.1.7.14 mac_ui_trans_cts_file

Figure 3-27 shows the Transfer CTS File GUI form. Figure 3-10 shows how this
form is activated.

Figure 3-27 Transfer File GUI

3.1.1.7.14.1 Purpose

The purpose of the mac_ui_trans_file window is to provide operations with a
graphical user interface that allows selecting one or more raw files for transfer
from a selected CTS.

Values are obtained from table TEMP_CTS_FILES.

9/10/09 - 60 - DCS 104.4

Requirements delineated in paragraph 3.2.1.6.12 of the SRS are allocated to the
mac_ui_trans_cts_file window.

3.1.1.7.14.2 Development Status

The mac_ui_trans_cts_file window is new for DCS 1.2.

3.1.1.7.14.3 Resource Utilization

The resource utilization for mac_ui_trans_cts_file is not a concern.

3.1.1.7.14.4 Program Library

Module mac_ui_trans_cts_file will be implemented as a stand-alone Oracle form.

3.1.1.7.15 mac_ui_init_tape

Figure 3-29 shows the Initialize Tape GUI. Figure 3-11 shows how this form is
activated.

Figure 3-28 Initialize Tape

9/10/09 - 61 - DCS 104.4

3.1.1.7.15.1 Purpose

The purpose of the mac_ui_initialize_tape window is to provide operations with a
graphical user interface for initializing Backup/Archive tapes (primarily to re-use
outside tapes within the DCS archive).

The DDS and CTS radio buttons and CTS system drop-down list allow selection of
the system id (DDS or one of the CTSs) where the tape will be initialized into the
DCS Backup/Archive. The values used in this drop-down list are defined as
DCS_HW_STRING_ID in table DCS_CONFIGURATION and CAPT_SYS_ID in
table DCS_CAPTURE_ACCT.

The Select Tape Drive edit boxes will allow the operator to view the tape drive
status and select the drive to perform the initialization.

This module is derived from requirements delineated in paragraph 3.2.1.6.8 of the
SRS.

3.1.1.7.15.2 Development Status

The mac_ui_init_tape has been updated for DCS 1.3 with the following change:

• CCR 2067 – DCS Initialize Tape GUI Refresh Problem.
An ampsersand was added to the command string to initialize tapes in the
background on the DDS.

3.1.1.7.15.3 Resource Utilization

The resource utilization for mac_ui_init_tape is not a concern.

3.1.1.7.15.4 Program Library

Module mac_ui_init_tape is implemented as a stand-alone Oracle form.

3.1.2 Capture Transfer Subsystem (CTS)

The Capture Transfer Subsystem (CTS) is responsible for capturing the wideband
data to disk and transferring the raw file to the Data Capture System (DCS)
Database Server (DDS). Figure 3-29 shows the software units that comprise the
CTS.

9/10/09 - 62 - DCS 104.4

Figure 3-29 Capture Transfer Subsystem

Normally, operations will control CTS operations remotely from the DDS (see
section 3.3.1.1). As configuration parameters or schedules change, the relevant
files are sent to the CTS subsystem(s). After the file is delivered, a signal is sent
from the DDS to the rdc_AutoCapture daemon process to carry out the action.

3.1.2.1 AutoCapture Component

The rdc_AutoCapture process runs as a daemon process on the Capture Transfer
Subsystem. The purpose of the rdc_AutoCapture process is to automatically
start the rdc_XXXXX processes at appropriate times.

All of the requirements delineated in paragraph 3.2.2.1 of the SRS are allocated to
the rdc_AutoCapture process.

rdc_AutoCapture

id Raw Data File

id Support Schedule

id Setup Information

id Manual Capture parms

id Accounting File

rdc_Save

ftp

rdc_Transmit

tar

id

DCS-Database
Server Subsystem

(DDS)

id tape header

id Tape Id

Start Tar

Start Manual Capture
New Setup

New Schedule

Start ftp

id Raw Data File

rdc_DeleteFile

delete

rdc_Transfer

Start Save

Start Transfer
Start Delete

mode

mode

label

rsh
start rsh

rdc_GenLabel

id

Myriad Logic
Capture Device

mode

New File

B

Stop Capture

Abort Capture

rdc_AutoTransfer

Start Auto Transfer

RDC RingBuffer

MWD Formatter

id

Capture Transfer
Display (CTD)

Subsystem

Start MWD Formatter

id MWD Formatter Setup

A

rdc_Capture
rdc_Capture

Start Capture

9/10/09 - 63 - DCS 104.4

3.1.2.1.1 Purpose

Module rdc_AutoCapture will be the main function responsible for automatically
running the raw data capture processes as well as initiating auto file transfer via
“rdc_AutoTransfer”.

3.1.2.1.2 Development Status

rdc_AutoCapture was updated with the following changes:

• CCR 1645 -- Dual Downlinks from Polar Tapes on the Same CTS
o An optional “channel id” will be added to the manual capture

parameters file.
o The optional “channel id” will be passed on the command line to

rdc_Capture.

• CCR 1721 -- CTS1 failed to start. CTS2 started late.
o “rdc_AutoTransfer” was created to transfer data independently of

performing AutoCaptures (note: “rdc_AutoTransfer” is really a forked
child process of rdc_AutoCapture, not a separate process).

• CCR 2170 -- DCS - LCTS2 Capture failure with unable to open device error.
o “rdc_CaptureIsRunning” will be updated to use a ‘ps’ command

whose output format does not change over time (e.g. after 24hours)
and thus will always correctly identify a currently running process.

3.1.2.1.3 Resource Utilization

The resource utilization for rdc_AutoCapture.c is not a concern.

3.1.2.1.4 Program Library

Module rdc_AutoCapture is implemented as a stand-alone daemon process.

3.1.2.2 Raw Data Capture Component

3.1.2.2.1 Purpose

The rdc_Capture process will run either from the rdc_AutoCapture daemon process
or from the command line. The purpose of the rdc_Capture process is to
capture one 75 Megabits per Second data stream to disk and create an
associated accounting file.

All of the requirements delineated in paragraph 3.2.2.2 of the SRS are allocated to
the rdc_Capture process.

3.1.2.2.2 Development Status

The rdc_Capture was updated as follows:

9/10/09 - 64 - DCS 104.4

• CCR 1645 -- Dual Downlinks from Polar Tapes on the Same CTS
o An optional “channel id” will be added to the command line (passed

from rdc_AutoCapture).
o If the “channel id” is not present, the “channel id” will be derived using

the current algorithm.

• CCR 1653 -- File Size Problem in Accounting File causing problems
transferring to LPSNG

o The 2 second sleep for DMA completion will be updated to 10
seconds (to allow AIO completion).

o The asynchronous I/O buffer queue will be “sync’d” before closing the
file.

o The file will be closed before calling stat() to get the filesize.

• CCR 1661 -- DCS manual capture "DO NOT TRANSFER" functionality
changes.

o Accept signal SIGHUP as “stop capture and delete file”

• CCR 2006 -- DCS -- FILE_SIZE field in DB does not work for ASN
data.

o rdc_Capture processes will be updated to use an integer number of
bytes for file size (.acct files will still use MB for backward
compatibility).

3.1.2.2.3 Resource Utilization

The rdc_Capture will run on an isolated central processing unit (CPU). Since the
CTS machines only have two CPUs and one cannot be isolated, the capture
processes will need to share one CPU).

Each capture process allocates a ring buffer of twenty-five 4MB buffers (100MB) for
asynchronous writing to disk. Plus, each process allocates two 4MB buffers for
DMA transfers from the Myriad card.

Also, other resources in use during capture could interfere with capture (e.g. disk
accesses, other processes which limit I/O throughput).

3.1.2.2.4 Program Library

Module rdc_Capture is implemented as a stand-alone process.

3.1.2.3 Transfer To Tape Component

3.1.2.3.1 Purpose

The rdc_Save process runs either from the rdc_AutoTransfer daemon process
when enabled or from the command line. The rdc_InitTape process runs from
the command line.

9/10/09 - 65 - DCS 104.4

The purpose of the rdc_Save process is to write a raw data file to tape. All of the
requirements delineated in paragraphs 3.2.2.3 of the SRS are allocated to the
rdc_Save process. The purpose of module rdc_Save is to copy the captured raw
wideband data file to tape. The purpose of the rdc_InitTape process is to
initialize tapes for use in the DCS Backup/Archive.

3.1.2.3.2 Development Status

Module rdc_Save will be modified from existing source, with the following changes:

• CCR 1653 -- File Size Problem in Accounting File causing problems
transferring to LPSNG

o The .acct file info (e.g. file_size) will be validated before copying to
tape.

• CCR 1884 -- DCS - Remove dependency of accounting file for ASA data
o The tape device is passed in on the command line instead of using an

environment variable.
o A common routine is used to read the .acct file info.

• CCR 1619 -- CTS can only use tapes that are new or have been reinitialized.
o Call new init tape routine for new tapes.

Module rdc_InitTape was created from existing rdc_Save source, based on the
following CCR:

• CCR 1619 -- CTS can only use tapes that are new or have been reinitialized.
o The module creates a tapeHeader file and writes it to the beginning of

the tape.

3.1.2.3.3 Resource Utilization

The resource utilization for rdc_Save and rdc_InitTape is not a concern.

3.1.2.3.4 Program Library

Modules rdc_Save and rdc_InitTape are implemented as a stand-alone process.

3.1.2.4 Generate Label Component

3.1.2.4.1 Purpose

The rdc_GenStackedLabel process will run either from the rdc_Save process or
from the command line.

The purpose of the rdc_GenStackedLabel process is to create a tape label. All of
the requirements delineated in paragraph 3.2.1.2.10.3 of the SRS are allocated
to the rdc_GenStackedLabel process.

9/10/09 - 66 - DCS 104.4

3.1.2.4.2 Development Status
Module rdc_GenStackedLabel will be reused without change.

3.1.2.4.3 Resource Utilization

The resource utilization for rdc_GenStackedLabel is not a concern.

3.1.2.4.4 Program Library

Module rdc_GenStackedLabel.c will be implemented as a stand-alone process.

3.1.2.5 Delete Raw Files Component (CTS)

3.1.2.5.1 Purpose

The rdc_DeleteFiles process will run either from the rdc_AutoTransfer process or
from the command line.

The purpose of the rdc_DeleteFiles process is to remove raw files from on-line
storage. All of the requirements delineated in paragraph 3.2.2.4 of the SRS are
allocated to the rdc_DeleteFiles process.

The purpose of module rdc_DeleteFiles.c is to delete the RDC capture data file and
the associated accounting file. The file protection is checked. If the file is not
read-only, it is deleted. If the file is read-only an error message is logged and the
file is not deleted.

3.1.2.5.2 Development Status
Module rdc_DeleteFiles.c will be reused without change.

3.1.2.5.3 Resource Utilization

The resource utilization for rdc_DeleteFiles is not a concern.

3.1.2.5.4 Program Library

Module rdc_DeleteFiles will be implemented as a stand-alone process.

3.1.2.6 Raw File Transfer Component (CTS)

3.1.2.6.1 Purpose

The purpose of module rdc_TransferFile is to transfer the raw data file and the
associated accounting file to the DDS. After successful transfer, the file
protection is removed.

3.1.2.6.2 Development Status
Module rdc_TransferFile will be updated with the following changes:

9/10/09 - 67 - DCS 104.4

• CCR 1653 -- File Size Problem in Accounting File causing problems
transferring to LPSNG

o The .acct file info (e.g. file_size) will be validated before sending to
DDS.

3.1.2.6.3 Resource Utilization

The resource utilization for rdc_TransferFile.c is not a concern.

3.1.2.6.4 Program Library

Module rdc_TransferFile.c will be implemented as a stand-alone process.

3.1.2.7 Raw Data Transmit Component

3.1.2.7.1 Purpose

The purpose of module rdc_Transmit.c is to transmit a data file out the Myriad
Logic capture card for test purposes.

3.1.2.7.2 Development Status
Module rdc_Transmit will be reused without change.

3.1.2.7.3 Resource Utilization

The resource utilization for rdc_Transmit is not a concern.

3.1.2.7.4 Program Library

Module rdc_Transmit is implemented as a stand-alone process.

3.1.2.8 Journaling Component

The Journaling Component on the CTS will reuse the journaling component on the
DDS.

3.1.2.9 Moving Window Display (MWD) Formatter Component

3.1.2.9.1 Purpose

The purpose of the MWD Formatter Component is to frame sync, format, and
subsample incoming raw wideband data and deliver the subsampled imagery to
the Capture Transfer Display subsystem’s MWD.

3.1.2.9.2 Development Status
MWD Formatter Component will be reused from previous projects and will require

numerous changes.

9/10/09 - 68 - DCS 104.4

3.1.2.9.3 Resource Utilization

The resource utilization for the MWD Formatter could become significant.

3.1.2.9.4 Program Library

The MWD Formatter Component will be implemented as a stand-alone process.

3.1.3 Capture Transfer Display (CTD)

The Capture Transfer Display (CTD) subsystem is responsible for creating and
showing a Moving Window Display for the incoming wideband data. It will host
the MWD server component.

3.2 Concept of execution

3.2.1 Normal Raw Data Flow

Refer to Figure 3-29 for raw data flow through the CTS. Normal Raw Data Flow
begins with the rdc_Capture process. The rdc_AutoCapture process will start an
rdc_Capture process to retrieve data from each Myriad Logic capture card
device and save it to disk. rdc_AutoCapture also starts a MWDFormatter
process.

The rdc_Capture processes provide data to the MWDFormatter via a shared
memory ring buffers. At the end of capture, each rdc_Capture will create an
Accounting File for the raw file it received and return with an exit status showing
successful capture.

When all rdc_Capture processes have finished, rdc_AutoCapture will start
rdc_AutoTransfer for each raw data file to transfer the file to the DDS. After all
transfers are complete, rdc_AutoTransfer will start rdc_Delete to remove the
local files.

rdc_Transfer will use ftp to transfer each raw data file (and accounting file) to the
DDS. After each transfer, rdc_Transfer will execute mac_UpdDCSAcct on the
DDS (via the remote shell, ‘rsh’).

Refer to Figure 3-9 for raw data flow on the DDS. mac_UpdDCSAcct will read the
accounting file, create a record in table DCS_RAWFILE_ACCT, and create
transfer record(s) in table TRANSFER_ACCT with the XFER_STATUS set to ‘IN-
QUEUE’. The transfer records are created based on the MISSION_ID recorded
in the accounting file and the raw file routing information setup in table
ROUTING_ACCT.

DDS automation will select the oldest, highest priority file from those that are ‘IN-
QUEUE’ for each destination and set it to ‘READY’.

When each destination system sees the ‘READY’ status for their destination id, it
will update their corresponding XFER_STATUS to ‘PROGRESS’ and ftp fetch

9/10/09 - 69 - DCS 104.4

the raw file. After the transfer is complete (i.e. when the destination system no
longer needs the file from DDS), the destination will set the XFER_STATUS to
‘SUCCESS’. If the destination system fails to retrieve the file, it will set the
XFER_STATUS field to a failure code.

3.3 Interface design.

3.3.1 Interface identification and diagrams.

3.3.1.1 DDS to CTS Interface

The DDS to CTS Interface is used to pass data and information between the DDS
and each CTS. Both the DDS and the CTS are being updated, so the interface
has specific requirements imposed on it. Refer to Figure 3-9, Figure 3-4, Figure
3-5, Figure 3-6, and Figure 3-29 for diagrams depicting portions of this interface.

3.3.1.2 DDS to Destination Systems Interface

The DDS to Destination Systems Interface is used to communicate raw data
delivery between the DDS and each destination system retrieving raw data from
the DDS. The DDS is being updated without changes to this interface, so the
interface imposes requirements on the DDS. Refer to the DCS Database
Schema in Figure 3-2.

3.3.1.3 MOC to DDS Interface

The MOC to DDS Interface is used to transfer Contact Schedules from the Mission
Operations Center(s) to the DDS. Only the DDS is being modified for this effort,
so the interface imposes specific requirements on the DDS. This interface is
depicted in Figure 3-4.

3.3.1.4 RDC to MWD Formatter Interface

The RDC to MWD Formatter Interface is used to transfer raw wideband data to the
MWD Formatter Component for formatting and displaying. This interface is
depicted in Figure 3-29.

3.3.1.5 CTS to CTD Interface

The CTS to CTD Interface is used to transfer formatted and subsampled video
imagery and other information from the CTS to the Capture Transfer Display
subsystem. This interface is depicted in Figure 3-29.

3.3.2 DDS to CTS Interface

The DDS to CTS Interface is used to pass CTS Setup Information, Manual Raw
Data Capture Parameters and CTS Support Schedule information from the DDS
to the CTS(s). The interface is also used to electronically transfer captured Raw
Data files from each CTS to the DDS.

9/10/09 - 70 - DCS 104.4

3.3.2.1 Priority Assigned

The operator initiates changes to and delivery of CTS Setup Information and
Manual Raw Data Capture Parameters on the DDS. Changes to and delivery of
the CTS Support Schedule are initiated by the DDS whenever a mission contact
schedule is ingested (usually from automatic polling) or modified (usually from
operator updates). Receipt of Raw Data from the CTS is initiated by the CTS.
These actions are performed independent of other DDS operations and thus will
run at normal system priority.

Receipt of CTS Setup Information, Manual Raw Data Capture Parameters and CTS
Support Schedule on the CTS is initiated by the DDS signaling the CTS. Ingest
of the new information will occur immediately.

Delivery of Raw Data from CTS to DDS is initiated automatically, immediately after
capture. The CTS will initiate ingest of the new raw data file on the DDS.

3.3.2.2 Type of Interface

The DDS to CTS Interface is in the form of data files delivered via File Transfer
Protocol and remote commands executed via remote shell (rsh). The rsh
command will be a ‘kill’ command to send a signal or, in the case of Raw Data
delivery, execute DDS process mac_UpdDCSAcct to register the data in the
database and signal destination systems of available data.

3.3.2.3 Characteristics of Data Elements

3.3.2.3.1 CTS Setup Information

CTS Setup Information is an ASCII text file that provides operating parameters and
options for the CTS. Each parameter appears on a separate line and is
preceded by an identifying field name and an equals sign, e.g. “<field name> =
value”.

3.3.2.3.1.1 Individual Data Elements

Mission_Identification – character string of 1 to 5 characters that uniquely identify
the default mission (note these values will be defined in table MISSION_ACCT
on the DDS).

Transfer_Method – character string set to one of the following:
FTP indicates the CTS will ftp transfer raw files to the DDS.
TAPE indicates the CTS will tar the raw files to tape.
NONE indicates the CTS will not transfer the raw files (they will remain on

the CTS).
Transfer_Idle_Time – integer indicating number of hours of idle (no scheduled

captures) time needed before beginning raw file transfer.
FTP_Address – character string set to the internet address of the DDS (used only

if the Transfer Method is ‘FTP’).

Comment [bjp4]: May be able to eliminate
this.

9/10/09 - 71 - DCS 104.4

FTP_Directory – character string set to the directory/path on the DDS to receive
raw files (used only if the Transfer Method is ‘FTP’).

FTP_User_Name – character string set to the DDS user name for ftp login (used
only if the Transfer Method is ‘FTP’).

FTP_Password – character string set to the DDS user name password for ftp login
(used only if the Transfer Method is ‘FTP’).

Delete_After_Transfer – character string set to one of the following:
YES indicates the CTS will delete the raw files after successful transfer to the

DDS or tape.
NO indicates the CTS will not delete the raw files after successful transfer to

the DDS or tape.
Num_Capture_Systems – The number of CTS systems at this particular ground

station. This parameter is used when generating a unique “capture source” if the
CTS is supporting two Myriad cards. The “capture source” for the second card is
the same as the first plus this value.

Tape_Device – The tape device name to use for saving files to tape.

MWD_Name – The MWD system id to receive the scrolling imagery.

/hw/myriad/<N> – The channel assignment for slot <N>.
Example:
Mission_Identification= L7ET
Transfer_Method= FTP
Transfer_Idle_Time= 2
FTP_Address= dds001
FTP_Directory= /u01/ops/rawdata
FTP_User_Name= opsftp
FTP_Password= pass
Delete_After_Transfer= YES
Num_Capture_Systems= 3
Tape_Device= /hw/tape/tps1d4nrnsv
MWD_Name= 2
/hw/myriad/6 = 3

3.3.2.3.1.2 Sources and Recipients

On the DDS, module mac_GenSetup will create a CTS Setup Information file
based on records in table DCS_CAPTURE_ACCT, then ftp the file to the CTS
and send a “New Setup” signal to rdc_AutoCapture. Figure 3-5 shows this
portion of the interface.

On the CTS, module rdc_AutoCapture will receive the “New Setup” signal and re-
read the CTS Setup Information file. Figure 3-29 shows this portion of the
interface.

The requirements of paragraph 3.1.1.2 are allocated to this portion of the design.

9/10/09 - 72 - DCS 104.4

3.3.2.3.2 Manual Capture Parameters

Manual Capture Parameters are delivered in an ASCII text file that provides
parameters and options for the CTS to perform a manual capture (i.e. capture
initiated by an operator). Each parameter appears on a separate line and is
preceded by an identifying field name and an equals sign, e.g. “<field name> =
value”. Manual captures are generally used to capture data from wideband
tapes.

3.3.2.3.2.1 Individual Data Elements

Mission_Identification – character string of 1 to 5 characters that uniquely identify
the mission (note these values will be defined in table MISSION_ACCT on the
DDS).

Original_Station – character string of 1 to 5 characters that uniquely identify the
receiving ground station that downlinked the data and recorded it to wideband
tape.

Scheduled_Start_Time – character string of 11 characters that identify the starting
date/time of the satellite downlink (format: YYDDDHHMMSS).

Scheduled_Stop_Time – character string of 11 characters that identify the ending
date/time of the satellite downlink (format: YYDDDHHMMSS).

Priority – integer from 0 to 9.

Source – integer from 0 to 9, or ‘*’, optional field. If not present or set to ‘*’, the
channel is derived from the Lcts hostname and the Myriad Logic capture card
slot number.

Example:
Mission_Identification= L7ET
Original_Station= AGS
Scheduled_Start_Time= 00094023442
Scheduled_Stop_Time= 00094024411
Priority= 1
Source= 3

3.3.2.3.2.2 Sources and Recipients

On the DDS, module mac_ManCapture will create a Manual Capture Parameter
File based on information entered by the operator in the GUI (see Figure 3-19),
then ftp the file to the selected CTS and send a “Start Manual Capture” signal to
the rdc_AutoCapture process.

Figure 3-6 shows this portion of the interface.
On the CTS, module rdc_AutoCapture will receive the “Start Manual Capture”

signal, read the Manual Capture Parameters file, and perform the capture.
Figure 3-29 shows this portion of the interface.

The requirements of paragraph 3.1.1.3 are allocated to this portion of the design.

9/10/09 - 73 - DCS 104.4

3.3.2.3.3 CTS Support Schedule

The CTS Support Schedule is delivered as an ASCII text file that provides
parameters and options for the CTS to perform automated captures. All
parameter values for a scheduled capture appear on a single line. This file does
not include field names or equal signs.

3.3.2.3.3.1 Individual Data Elements

Mission_Identification – character string of 1 to 5 characters that uniquely identify
the mission (note these values will be defined in table MISSION_ACCT on the
DDS).

Scheduled_Start_Time – character string of 11 characters that identify the starting
date/time of the downlink (format: YYDDDHHMMSS).

Scheduled_Stop_Time – character string of 11 characters that identify the ending
date/time of the downlink (format: YYDDDHHMMSS).

Priority – integer from 0 to 9.
Example:
L7 00-094-02:34:42 00-094-02:44:11 1
L7 00-094-04:13:42 00-094-04:18:11 2

3.3.2.3.3.2 Sources and Recipients

On the DDS, module mac_GenSuptSchedule will create a Support Schedule File,
based on contact information in the CONTACT_SCHEDULE database table,
then ftp the file to CTS and send a “New Schedule” signal to the
rdc_AutoCapture process running on the CTS. Figure 3-4 shows this portion of
the interface.

On the CTS, module rdc_AutoCapture will receive the “New Schedule” signal and
re-read the Support Schedule file. Figure 3-29 shows this portion of the
interface.

The requirements of paragraph 3.1.1.4 are allocated to this portion of the design.

3.3.2.3.4 Raw Data

Raw Data is delivered from the CTS to the DDS as two files: an ASCII text file that
provides accounting information about the raw file and a binary data file that
contains the raw captured data. Each accounting parameter appears on a
separate line and is preceded by an identifying field name and an equals sign,
e.g. “<field name> = value”.

3.3.2.3.4.1 Individual Data Elements

CTS_Capture_String – character string of 1 to 10 characters that uniquely
identifies the CTS system the wideband data was captured on (note these values
will be defined in the DCS_CAPTURE_ACCT).

9/10/09 - 74 - DCS 104.4

Capture_Source – character string of 1 to 3 characters that identifies the ground
station data source delivering wideband data to the CTS.

Original_Station – character string of 1 to 5 characters that uniquely identifies the
original receiving ground station that downlinked the wideband data.

Scheduled_Start_Time – character string of 11 characters that identifies the
starting date/time of the satellite downlink (format: YYDDDHHMMSS).

Scheduled_Stop_Time – character string of 11 characters that identifies the
ending date/time of the satellite downlink (format: YYDDDHHMMSS).

Actual_Start_Time – character string of 11 characters that identifies the actual
starting date/time of the CTS capture (format: YYDDDHHMMSS).

Actual_Stop_Time – character string of 11 characters that identifies the actual
ending date/time of the CTS capture (format: YYDDDHHMMSS).

Raw_Data_File_Name – character string of 1 to 256 characters that identifies the
raw data file name.

File_Size – fixed-point number that represents the number of megabytes in the file
(the number of decimal places is 6, so the actual number of bytes can be
determined).

Received_Data_Vol – number of megabytes of data received through the capture
card channel (should be the same as File_Size unless a write error occurred
writing to the disk file).

Expected_Data_Vol – number of megabytes of data expected. This number is
estimated from the actual start of data transmission through the end of the
capture session, which is determined by the downlink times.

Scheduled_Data_Vol – number of megabytes of data scheduled. This number is
estimated from the scheduled downlink start time through the scheduled
downlink end time, which makes it the same as Expected_Data_Vol.

Transmission_Rate – reception rate of the wideband data (in megabytes per
second). This number is the Received_Data_Vol divided by the overall capture
session time (from downlink start through stop).

Isolate_Flag – integer (0 or 1) indicating if the capture process was executed on an
isolated processor.

Suspend_Flag – integer (0 or 1) indicating if non-essential processes (e.g. ‘tar’ and
‘ftp’) that may interfere with the capture process were suspended during the
capture.

Mission_Id – character string of 1 to 5 characters that uniquely identify the mission
(note these values will be defined in table MISSION_ACCT on the DDS).

Priority – integer from 0 to 9.
Example:
CTS_Capture_String= cts001

9/10/09 - 75 - DCS 104.4

Capture_Source= 1I
Original_Station= AGS
Scheduled_Start_Time= 00333112245
Scheduled_Stop_Time= 00333113245
Actual_Start_Time= 00340133756
Actual_Stop_Time= 00340134756
Raw_Data_File_Name= L7ET2002004045101EDC025I.data
File_Size= 4654.321234
Received_Data_Vol= 4654.32
Expected_Data_Vol= 5400.00
Scheduled_Data_Vol= 5400.00
Transmission_Rate= 7.76
Isolate_Flag= 1
Suspend_Flag= 1
Mission_Id= L7ET
Priority= 1

3.3.2.3.4.2 Sources and Recipients

On the CTS, module rdc_Transfer will ftp the raw data file and it’s associated
accounting file to the DDS and execute the mac_UpdDCSAcct process running
on the DDS. Figure 3-29 shows this portion of the interface.

On the DDS, module mac_UpdDCSAcct will read the associated accounting file
and update the database. Figure 3-9 shows this portion of the interface.

The requirements of paragraph 3.1.1.5 are allocated to this portion of the design.

3.3.2.3.5 Mission Information

The Mission Information file is delivered as an ASCII text file that provides the
mission-specific information needed to perform captures. All parameter values
for a mission id/channel appear on a single line. This file does not include field
names or equal signs.

3.3.2.3.5.1 Individual Data Elements

Mission_Identification – character string of 1 to 5 characters that uniquely identify
the mission (note these values will be defined in table MISSION_ACCT on the
DDS).

Data_Type – 3-character field indicating the type of data.

Bit_Rate – character string of up to 11 numbers that identifies the data bit rate in
bits-per-second.

Channel_Id – single character indicating which capture device channel will receive
data. This id will be ‘a’, ‘b’, or ‘*’ for both.

Example:
L7ET NOM 75000000 *
L5ET NOM 85000000 a

9/10/09 - 76 - DCS 104.4

3.3.2.3.5.2 Sources and Recipients

On the DDS, module mac_SendSetup will create a Mission Information file, based
on information in the MISSION_ACCT database table, then ftp the file to CTS.
Figure 3-5 mac_SendSetup shows this portion of the interface.

The requirements of paragraph 3.1.1.6 are allocated to this portion of the design.

3.3.3 DCS to Destination Systems Interface

The DCS to Destination Systems Interface is used to notify each destination
system of available data and track the transfer of the data to the destination.
Refer to the DCS to Destination Systems ICD (reference document #0) for
complete details.

3.3.4 MOC to DDS Interface

The MOC to DDS Interface is used to transfer Contact Schedules from the Mission
Operations Center to the DDS. The mission Contact Schedule is delivered as an
ASCII text file that provides parameters and options for the DCS to perform
automated captures. Several parameter values for a scheduled capture appear
on a single line. This file does not include field names or equal signs.

This interface is depicted in Figure 3-4.

3.3.4.1 Contact Schedule

The contact schedule contains the following for each scheduled transmission of
wideband and narrowband data to EDC:

• Predicted acquisition of signal (AOS) and loss of signal (LOS) times

• Scheduled start and stop times of data transmission (for wideband data only)

• X-band frequencies (for wideband data only)
The MOC produces the contact schedule daily and delivers it to the DDS before the

first contact listed in the schedule. The contact schedule covers a 48-hour
period. A revised contact schedule is sent whenever an unexpected schedule
change occurs.

The Contact Schedule file format is defined in section 4.2.2 of the MOC to LGS ICD
(see additional reference document #0).

Requirements defined in SRS 3.1.3.1 are allocated to this interface.

3.3.5 RDC to MWD Formatter Interface

The RDC to MWD Formatter Interface is used to transfer raw data buffers from the
Raw Data Capture component to the Moving Window Display Formatter
component.

This interface is depicted in Figure 3-29.

9/10/09 - 77 - DCS 104.4

3.3.5.1 Priority Assigned

The raw data capture component will not wait for a free buffer. If the ring buffer is
full, the current buffer will be discarded.

3.3.5.2 Type of Interface

Raw data is delivered via a ring buffer using POSIX compatible shared memory and
counting semaphores.

3.3.5.3 Characteristics of Data Elements

3.3.5.3.1 rdc_mwd_shm_ctl

A portion of the shared memory defines the characteristics and control of the entire
shared memory block.

3.3.5.3.1.1 Individual Data Elements

BufCmd – 64-bit integer used for sending commands & status from RDC to the
MWD Formatter Ingest: 0=shared memory not ready (default); 1=shared
memory is ready, begin reading; -1=end of contact, flush memory and stop.

BufSize – 64-bit integer indicating the number of bytes in each ring buffer block.

NumBufs – 64-bit integer indicating the number of ring buffer blocks.

FullSem – type sem_t, counting integer indicating the number of full buffers.

EmptySem – type sem_t, counting integer indicating the number of empty buffers.

3.3.5.3.1.2 Sources and Recipients

The rdc_Capture process is responsible for initializing the rdc_mwd_shm_ctl block.
rdc_Capture will do the following:

1. set BufCmd to 0 (0 is the default when the shared memory is created).
2. set the BufSize and NumBufs values.
3. initialize the FullSem semaphore to 0 (indicating none are full).
4. initialize the EmptySem semaphore to NumBufs (indicating all are empty).
5. after initialization, the BufCmd will be set to 1, (indicating that the MWD

Formatter Ingest can begin using the shared memory.
During capture, each time rdc_Capture receives an incoming data buffer, it will ‘test

and wait’ the EmptySem to see if the MWDFormatter has not fallen too far
behind. If the ‘test and wait’ shows that the MWDFormatter has not fallen
behind, rdc_Capture will post the FullSem, otherwise it will not.

At the end of the contact, rdc_Capture will write a –1 into the BufCmd.

Upon start-up, the MWDFormatter Ingest routine will wait for BufCmd to become 1.
Then use the BufSize and NumBufs values for appropriate initialization.

9/10/09 - 78 - DCS 104.4

During execution, each time the MWDFormatter ingest needs another data buffer, it
will ‘test and wait’ the FullSem to see if there’s an available buffer. If one is
available, the buffer is read from the next available buffer and processed. If
none are available, the BufCmd is checked to see if end-of-contact has been
reached. At the end of the contact, the MWD Formatter will shutdown.

9/10/09 - 79 - DCS 104.4

3.3.5.3.2 Shared Arrays

Three shared blocks are also stored in the shared memory.

3.3.5.3.2.1 Individual Data Elements

BufNumber – array of 64-bit integers used to associate each raw data buffer in the
ring with a sequence number. The MWD Formatter Ingest routine can use these
numbers for “drop-out” detection. The array is NumBufs long.

RingBuffers – array of buffers holding the raw data. Each Buffer is BufSize bytes
long and the array is NumBufs long.

InsertTimes – array of 64-bit integers holding the timestamps of each buffer written
to the ring. These timestamps are useful for measuring throughput performance.
The array is NumBufs long.

3.3.5.3.2.2 Sources and Recipients

Each time rdc_Capture receives an incoming data buffer it will increment an
internal buffer_number. If a buffer is available, the buffer is written into the next
slot in the RingBuffers array, the buffer_number is stored in the corresponding
position of the BufNumber array, and the current time is stored in the
corresponding position of the InsertTimes array.

Each time the MWD Formatter Ingest reads another data buffer, it will compare the
associated value from the BufNumbers array with an internal
last_buffer_number (for drop-out detection).

3.3.6 CTS to CTD Interface

The CTS to CTD Interface is used to transfer formatted and subsampled video
imagery and other information from the CTS to the Capture Transfer Display
subsystem.

3.3.6.1 Priority Assigned

This interface will use normal priorities for communication.

3.3.6.2 Type of Interface

The CTS to CTD Interface is in the form of commands and data delivered via
Terminal Control Protocol / Internet Protocol (TCP/IP) socket communication.

3.3.6.3 Characteristics of Data Elements

3.3.6.3.1 MWD Commands

The interface will be in the form of socket messages carrying various MWD
commands.

9/10/09 - 80 - DCS 104.4

3.3.6.3.1.1 Individual Data Elements

Command – character string set to one of the following:
Init commands the MWD to initialize / re-initialize.
Video sends a single line of video for a single band of data to the MWD

for display.
Text sends a single line of text to the MWD for display to the right side

of the video.
Interval commands the MWD to start a new interval of data without

reinitializing the MWD.
Gap commands the MWD to start a new interval of data and inserts

black video along with annotating text.

3.3.6.3.1.2 Sources and Recipients

On the CTS, the MWDFormatter module will create the MWD commands and write
them to the socket. On the CTD the MWD server application will read the MWD
commands from the socket and perform the requested function. Figure 3-29
shows this portion of the interface.

The requirements of paragraph 3.1.5.1 are allocated to this portion of the design.

9/10/09 - 81 - DCS 104.4

Section 4 CSCI Detailed Design

4.1 DCS Database Server

4.1.1 Database Component

The details of the database component are given in the DCS Database Analysis &
Design (applicable document #0).

4.1.2 Monitor and Control Component

4.1.2.1 mac_DDS

4.1.2.1.1 Unit Design Decisions

There are no special design decisions, such as algorithms used, for this unit.

4.1.2.1.2 Constraints, Limitations, or Unusual Features

There are no special constraints, limitations, or unusual features for this unit.

4.1.2.1.3 Programming Language

This unit will be implemented using the ANSI standard C programming language.

4.1.2.1.4 Procedural Commands

mac_DDS will use Pro C embedded SQL to query table DCS_CONFIGURATION
for current options.

4.1.2.1.5 Inputs, Outputs, and Other Data Elements

The inputs to mac_DDS are the parameters set in the DCS_CONFIGURATION
table (see Table 9: DCS_CONFIGURATION). mac_DDS will have no outputs.

Function Check_for_schedule will have a directory listing as an input. It will have
no outputs.

Function Check_disk_space will have stats from the local disk system, plus table
DCS_RAWFILE_ACCT (see Table 10: DCS_RAWFILE_ACCT) and table
TRANSFER_ACCT (see Table 11: TRANSFER_ACCT) for inputs. The function
will have no outputs.

Function Check_for_xfers will have table DCS_RAWFILE_ACCT (see Table 10:
DCS_RAWFILE_ACCT) and table TRANSFER_ACCT (see Table 11:
TRANSFER_ACCT) for inputs. It will have no outputs.

9/10/09 - 82 - DCS 104.4

4.1.2.1.6 Software Unit Logic

4.1.2.1.6.1 Initiation

mac_DDS will start up and launch the DDS GUI window. It will then go into a
polling loop, executing the Check_for_schedule, Check_disk_space, and
Check_for_xfers functions.

4.1.2.1.6.2 Control

mac_DDS will launch the DDS GUI window to run independently of mac_DDS (i.e.
in the background).

Function Check_for_schedule will launch mac_IngestContact to ingest newly
detected Contact Schedules. It will wait for mac_IngestContact to complete.

Function Check_disk_space will launch either mac_BackupArchive or mac_Delete
if the disk space is below a threshold. It will launch mac_Delete for the oldest file
on the system that has been received by all archiving systems. If disk space is
low, and the remaining files have not been retrieved by all archiving systems, the
newest file of the lowest priority (highest integer value) on the system is backed-
up to tape via mac_BackupArchive.

4.1.2.1.6.3 Response

There are no special responses or response times to each input; including data
conversion, renaming, and data transfer operations.

4.1.2.1.6.4 Sequence of Operations

mac_DDS:
1. Launch mac_ui_DDS_main to start the main GUI window.
2. Fork processes to begin polling loops (1 polling loop for each function):

a. Poll/Execute function Check_for_schedule.
b. Poll/Execute function Check_disk_space.
c. Poll/Execute function Check_for_xfers.

Check_for_schedule:
1. Read options (polling loop interval) from DCS_CONFIGURATION table.
2. Launch ‘ls’ command to obtain list of files in schedule directory (which is

‘$DCS_HOME/schedules’), sorted to get oldest file first.
3. Loop through the files found,

a. launch mac_IngestContact (which will load the information into the
database, send updated support schedules to each CTS, and move the
contact schedule file to a ‘processed’ directory).

Check_disk_space :
1. Read options (polling loop interval, disk threshold) from

DCS_CONFIGURATION table.
2. Obtain available disk space for the raw file directory.

9/10/09 - 83 - DCS 104.4

3. If the disk space is below the threshold
a. Query database tables DCS_RAWFILE_ACCT, TRANSFER_ACCT, and

DESTINATION_ACCT for a list of on-line raw files with lowest priority
(highest integer value) that have been successfully archived (either
transferred to all archiving systems defined for the mission, or copied onto
a DCS Backup/Archive tape).

b. if a file is found
i. Launch mac_DeleteRawFiles to delete the newest file in the list

(just one).
Check_for_xfers:

1. Read options (polling loop interval) from DCS_CONFIGURATION table.
2. Query database tables DCS_RAWFILE_ACCT and TRANSFER_ACCT for a

list of on-line raw files successfully transferred to all destinations and the last
TRANSFER_ACCT. STATUS_DATE is more than
DCS_CONFIGURATION.DELETION_DELAY time old.

3. Launch mac_DeleteRawFiles to delete each file.
4. Select next available file for transfer (oldest on-line file of highest priority

(lowest integer value)) for the destination and set the corresponding
XFER_STATUS to ‘READY’.

4.1.2.1.6.4.1 Method of Sequence Control

The method for sequence control is defined by normal program flow within the
module.

4.1.2.1.6.4.2 Logic and Input Conditions

Each polling function will be executed as a separate process and will have it’s own
polling interval defined in the database.

Priority for automatic contact schedule ingest is to ingest the oldest (by file date)
first. Normally, only one contact schedule will appear in the schedule directory at
a time; however, if more than one should appear, the newest one should be
ingested last.

Priority for automatic clean-up is to remove files with lowest priority (highest integer
value) that are successfully archived. By removing files that are successfully
archived first, clean-up will be much faster. Also, it won’t make any difference to
processing systems whether they request the file from DCS Backup/Archive
tapes or from the archiving system (in fact requesting from the archiving systems
may be faster if the request is automated).

4.1.2.1.6.4.3 Data Transfer in and out Of Memory

The Data Transfer in and out Of Memory is not a concern

9/10/09 - 84 - DCS 104.4

4.1.2.1.6.4.4 Discreet Inputs

There is no sensing of discreet input signals, and timing relationships between
interrupt operations within this software unit.

4.1.2.1.6.5 Exception and Error Handling

Exception and Error Handling will normally log appropriate journal messages, but
continue with normal operations (if possible).

4.1.2.1.6.6 Data Structure Charts

There are no significant data structures for this unit.

4.1.2.1.6.7 Details of the Software Unit

Figure 4-1 shows the basic execution flow for module mac_DDS.c

Figure 4-1 mac_DDS Flowchart

Launch
mac_ui_DDS_main mac_ui_DDS_main

 fork child process
Check_for_schedule Check_for_schedule

 fork child process
Check_disk_space Check_disk_space

 fork child process
Check_for_xfers Check_for_xfers

wait for signal

9/10/09 - 85 - DCS 104.4

Figure 4-2 shows the basic execution flow for function Check_for_schedule.

Figure 4-2 Check_for_schedule Flowchart

check schedule
directory for files

files found? No

Yes

Launch
mac_IngestSchedule
for oldest file found

mac_IngestSchedule

wait specified poll
interval

read schedule_poll value
from table

DCS_CONFIGURATION

polling interval
> 0?

Yes

sleep for 10
secondsNo

9/10/09 - 86 - DCS 104.4

Figure 4-3 shows the basic execution flow for function Check_disk_space.

Figure 4-3 Check_disk_space flowchart

check raw file disk
available space

below
threshold?No

Yes

Log "low disk space"
warning

wait specified poll
interval

read disk_poll and
disk_threshold

values from table
DCS_CONFIG

check database
for on-line but
archived files,
sorted to get
newest file of
lowest priority.

file found?
Launch

mac_DeleteRawFile for
newest file found

mac_DeleteRawFile

Yes

No

polling interval
> 0?

log warning
and wait 10

seconds
No

9/10/09 - 87 - DCS 104.4

Figure 4-4 shows the basic execution flow of function Check_for_xfers.

Figure 4-4 Check_for_xfers Flowchart

read transfer_poll
value from table
DCS_CONFIG

Launch
mac_DeleteRawFiles

mac_DeleteRawFiles

polling interval
> 0?No

yes

wait interval
seconds

Make next available
file READY.

sleep 10 seconds

Select oldest file
from completed

transfers (on-line
and all success).

status_date
older than

deletion_delay

Yes

No

any more
'ready' files in

queue?

No

Yes

Operations may have
manually 'readied' a

second (or more) files.

9/10/09 - 88 - DCS 104.4

4.1.2.2 mac_IngestContact

4.1.2.2.1 Unit Design Decisions

There are no special design decisions, such as algorithms used, for this unit.

4.1.2.2.2 Constraints, Limitations, or Unusual Features

There are no special constraints, limitations, or unusual features for this unit.

4.1.2.2.3 Programming Language

This unit will be implemented using the ANSI standard C programming language.

4.1.2.2.4 Procedural Commands

mac_IngestContact will use Pro C embedded SQL to update the
CONTACT_SCHEDULES table in the database.

4.1.2.2.5 Inputs, Outputs, and Other Data Elements

mac_IngestContact will read the contact schedule file given on the command line
and update table CONTACT_SCHEDULES with the new information.

4.1.2.2.6 Software Unit Logic

4.1.2.2.6.1 Initiation

There are no special conditions in effect within the software unit when its execution
is initiated.

4.1.2.2.6.2 Control

After ingesting the contact schedule, mac_IngestContact will launch
mac_GenSuptSchedule to create and send CTS support schedules to the
affected Capture Transfer Subsystems.

4.1.2.2.6.3 Response

There are no special responses or response times to each input; including data
conversion, renaming, and data transfer operations.

4.1.2.2.6.4 Sequence of Operations

The sequence of operations and dynamically controlled sequencing during the
software unit’s operation include the following:

4.1.2.2.6.4.1 Method of Sequence Control

The method for sequence control is defined by normal program flow within the
module.

9/10/09 - 89 - DCS 104.4

4.1.2.2.6.4.2 Logic and Input Conditions

mac_IngestContact will need to determine which mission is being updated by the
contact schedule. For Landsat 7, field 1 of the Contact Schedule file is ‘7’, which
easily determines the mission.

mac_IngestContact will need to look for passes defined in the old schedule with a
non-default priority. It will then need to delete all mission contacts and insert
new scheduled passes with default priority.

4.1.2.2.6.4.3 Data Transfer in and out Of Memory

The data transfer in and out for memory is not a concern

4.1.2.2.6.4.4 Discreet Inputs

There is no sensing of discreet input signals, and timing relationships between
interrupt operations within this software unit.

4.1.2.2.6.5 Exception and Error Handling

Exception and Error Handling will normally log appropriate journal messages, but
continue with normal operations (if possible).

4.1.2.2.6.6 Data Structure Charts

There are no significant data structures for this unit.

4.1.2.2.6.7 Details of the Software Unit

9/10/09 - 90 - DCS 104.4

Figure 4-5 shows the basic execution flow for module mac_IngestContact.

Figure 4-5 mac_IngestContact Flowchart

4.1.2.3 mac_GenSuptSchedule

4.1.2.3.1 Unit Design Decisions

There are no special design decisions, such as algorithms used, for this unit.

4.1.2.3.2 Constraints, Limitations, or Unusual Features

There are no special constraints, limitations, or unusual features for this unit.

4.1.2.3.3 Programming Language

This unit will be implemented using the ANSI standard C programming language.

read in contact
schedule file,

retaining mission
id, AOS and LOS

times of all X-band
supports

Insert new AOS/
LOS times with
default mission

priority.

query table
CONTACT_SCHEDULES

for mission entries with
priority not equal to the

default priority.

Log warning
messages for

each non-default
priority entry

found.

Delete all entries
for this mission.

Query table
CAPTURE_MISSION_ACCT

for all capture systems
supported by mission

Launch
mac_GenSuptSchedule for

each capture system
mac_GenSuptSchedule

more capture
systems?

Yes

No

Note switch from using
start/end of data

9/10/09 - 91 - DCS 104.4

4.1.2.3.4 Procedural Commands

mac_GenSuptSchedule will use Pro C embedded SQL to query the database for
schedule information.

mac_GenSuptSchedule will also use ftp to send the support schedule file to the
CTS, and rsh to send a signal to the CTS.

4.1.2.3.5 Inputs, Outputs, and Other Data Elements

mac_GenSuptSchedule will receive a Mission id from the command line, then read
from table CONTACT_SCHEDULE and create a support schedule file for each
affected CTS.

4.1.2.3.6 Software Unit Logic

The software unit contains the following logic:

4.1.2.3.6.1 Initiation

There are no conditions in effect within the software unit when its execution is
initiated.

4.1.2.3.6.2 Control

After a support schedule file is created, ftp will be launched to send the file to the
CTS schedule directory. After the file is sent, mac_GenSuptSchedule will launch
rsh to send a ‘schedule update’ signal to the CTS’s rdc_AutoCapture process.

4.1.2.3.6.3 Response

There are no specific responses or response times for each input, including data
conversion, renaming, and data transfer operations.

4.1.2.3.6.4 Sequence of Operations

The sequence of operations and dynamically controlled sequencing during the
software unit’s operation include:

4.1.2.3.6.4.1 Method of Sequence Control

The method for sequence control is defined by normal program flow within the
module.

4.1.2.3.6.4.2 Logic and Input Conditions

mac_GenSuptSchedule will need to determine which entries in table
CONTACT_SCHEDULES to place in the support schedule. This is determined
by the CAPTURE_MISSION_ACCT. Therefore, the CONTACT_SCHEDULES

9/10/09 - 92 - DCS 104.4

table and CAPTURE_MISSION_ACCT table need to be setup prior to generating
the support schedule.

4.1.2.3.6.4.3 Data Transfer in and out Of Memory

The data transfer in and out for memory is not a concern.

4.1.2.3.6.4.4 Discreet Inputs

There is no sensing of discreet input signals, and timing relationships between
interrupt operations within this software unit.

4.1.2.3.6.5 Exception and Error Handling

Exception and Error Handling will normally log appropriate journal messages, but
continue with normal operations (if possible).

4.1.2.3.6.6 Data Structure Charts

There are no significant data structures for this unit.

4.1.2.3.6.7 Details of the Software Unit

The general flow of mac_GenSuptSchedule is depicted in Figure 4-6.

9/10/09 - 93 - DCS 104.4

Figure 4-6 mac_GenSuptSchedule Flowchart

4.1.2.4 mac_InsertFileNames

4.1.2.4.1 Unit Design Decisions

The support for IAS Calibration Parameter Files should be removed. Also, the
temporary table used to hold the filenames should be renamed from
LPS_CONTACT_SCHED_FILES to DCS_CONTACT_SCHED_FILES (to better
reflect the architecture and reduce maintenance confusion).

Create list of all missions
supported by the CTS

(query table
CAPT_MISSION_ACCT by

capt_sys_id)

Query CONTACT_SCHEDULES
table for earliest start time of

missions in list.
(First query starts at 20 minutes
before current system time.
Successive queries start at last
stop time.)

Query CONTACT_SCHEDULES
table for latest stop time within 20

minutes of earliest start time.

more contacts for
supported missions?

Write start_time, stop_time,
mission, and highest priority found

to support schedule file.

Yes

Send schedule to
CTS

No

9/10/09 - 94 - DCS 104.4

4.1.2.4.2 Constraints, Limitations, or Unusual Features

There are no special constraints, limitations, or unusual features for this unit.

4.1.2.4.3 Programming Language

This unit will be implemented using the ANSI standard C programming language.

4.1.2.4.4 Procedural Commands

Pro C embedded SQL is used to delete any existing entries and insert the
filenames into the table.

4.1.2.4.5 Inputs, Outputs, and Other Data Elements

The module reads the schedule directory and inserts the filenames into the table

4.1.2.4.6 Software Unit Logic

The software unit contains the following logic:

4.1.2.4.6.1 Initiation

There are no conditions in effect within the software unit when its execution is
initiated.

4.1.2.4.6.2 Control

There are no conditions under which control is passed to other software units.

4.1.2.4.6.3 Response

There are no specific responses or response times for each input; including data
conversion, renaming, and data transfer operations.

4.1.2.4.6.4 Sequence of Operations

The sequence of operations and dynamically controlled sequencing during the
software unit’s operation include:

4.1.2.4.6.4.1 Method of Sequence Control

The method for sequence control is defined by normal program flow within the
module.

4.1.2.4.6.4.2 Logic and Input Conditions

mac_InsertFileNames will place all filenames in the schedules directory into table
DCS_CONTACT_SCHED_FILES. Therefore, the files need to reside in the
schedules directory prior to executing mac_InsertFileNames.

9/10/09 - 95 - DCS 104.4

4.1.2.4.6.4.3 Data Transfer in and out Of Memory

The data transfer in and out for memory is not a concern.

4.1.2.4.6.4.4 Discreet Inputs

There is no sensing of discreet input signals, and timing relationships between
interrupt operations within this software unit.

4.1.2.4.6.5 Exception and Error Handling

Exception and Error Handling will normally log appropriate journal messages, but
continue with normal operations (if possible).

4.1.2.4.6.6 Data Structure Charts

There are no significant data structures for this unit.

4.1.2.4.6.7 Details of the Software Unit

The detailed design of this software unit is in the existing code (no changes
required).

4.1.2.5 mac_SendSetup

4.1.2.5.1 Unit Design Decisions

There are no special design decisions, such as algorithms used, for this unit.

4.1.2.5.2 Constraints, Limitations, or Unusual Features

There are no special constraints, limitations, or unusual features for this unit.

4.1.2.5.3 Programming Language

This unit will be implemented using the ANSI standard C programming language.

4.1.2.5.4 Procedural Commands

Pro C embedded SQL is used to access database records.

4.1.2.5.5 Inputs, Outputs, and Other Data Elements

The module reads the database records and inserts the CTS setup information into
an ASCII file to be sent to the CTS.

4.1.2.5.6 Software Unit Logic

The software unit contains the following logic:

9/10/09 - 96 - DCS 104.4

4.1.2.5.6.1 Initiation

There are no conditions in effect within the software unit when its execution is
initiated.

4.1.2.5.6.2 Control

Control will be passed to the UNIX ftp command to send the setup file, and then to
the UNIX rsh command to signal the CTS’s rdc_AutoCapture process to re-read
the setup information.

4.1.2.5.6.3 Response

There are no specific responses or response times for each input; including data
conversion, renaming, and data transfer operations.

4.1.2.5.6.4 Sequence of Operations

The sequence of operations and dynamically controlled sequencing during the
software unit’s operation include:

4.1.2.5.6.4.1 Method of Sequence Control

The method for sequence control is defined by normal program flow within the
module.

4.1.2.5.6.4.2 Logic and Input Conditions

mac_SendSetup will create a temporary ASCII setup file for a CTS, therefore the
setup information records need to exist in the database.

4.1.2.5.6.4.3 Data Transfer in and out Of Memory

The data transfer in and out for memory is not a concern.

4.1.2.5.6.4.4 Discreet Inputs

There is no sensing of discreet input signals, and timing relationships between
interrupt operations within this software unit.

4.1.2.5.6.5 Exception and Error Handling

Exception and Error Handling will normally log appropriate journal messages, but
continue with normal operations (if possible).

4.1.2.5.6.6 Data Structure Charts

There are no significant data structures for this unit.

9/10/09 - 97 - DCS 104.4

4.1.2.5.6.7 Details of the Software Unit

1. Read command-line parameters and validate (does specified CTS exist in
database?).

2. Read parameters from DCS_CAPTURE_ACCT.
3. Read channel mapping from DCS_CAPT_CHAN_MAP_ACCT.
4. Write parameters to ASCII setup file.
5. Read parameters from MISSION_ACCT.
6. Write parameters to ASCII mission info file.
7. ftp login to specified CTS.
8. Send files to CTS.
9. Log-out.
10. rsh ‘kill’ command to send signal SIGHIUP to rdc_AutoCapture on CTS.

4.1.2.6 mac_ManCapture

4.1.2.6.1 Unit Design Decisions

There are no special design decisions, such as algorithms used, for this unit.

4.1.2.6.2 Constraints, Limitations, or Unusual Features

There are no special constraints, limitations, or unusual features for this unit.

4.1.2.6.3 Programming Language

This unit will be implemented using the ANSI standard C programming language.

4.1.2.6.4 Procedural Commands

Pro C embedded SQL is used to access database records.

4.1.2.6.5 Inputs, Outputs, and Other Data Elements

The module reads the command-line parameters and inserts the capture
information into an ASCII file to be sent to the CTS.

4.1.2.6.6 Software Unit Logic

The software unit contains the following logic:

4.1.2.6.6.1 Initiation

There are no conditions in effect within the software unit when its execution is
initiated.

9/10/09 - 98 - DCS 104.4

4.1.2.6.6.2 Control

Control will be passed to the UNIX ftp command to send the capture parameter file,
and then to the UNIX rsh command to signal the CTS’s rdc_AutoCapture
process to read the capture information and perform the capture.

4.1.2.6.6.3 Response

There are no specific responses or response times for each input; including data
conversion, renaming, and data transfer operations.

4.1.2.6.6.4 Sequence of Operations

The sequence of operations and dynamically controlled sequencing during the
software unit’s operation include:

4.1.2.6.6.4.1 Method of Sequence Control

The method for sequence control is defined by normal program flow within the
module.

4.1.2.6.6.4.2 Logic and Input Conditions

mac_ManCapture will create a temporary ASCII setup file for a CTS from
command-line parameters, therefore the command-line parameters will need to
be specified and validated, or suitable defaults used.

4.1.2.6.6.4.3 Data Transfer in and out Of Memory

The data transfer in and out for memory is not a concern.

4.1.2.6.6.4.4 Discreet Inputs

There is no sensing of discreet input signals, and timing relationships between
interrupt operations within this software unit.

4.1.2.6.6.5 Exception and Error Handling

Exception and Error Handling will normally log appropriate journal messages, but
continue with normal operations (if possible).

4.1.2.6.6.6 Data Structure Charts

There are no significant data structures for this unit.

4.1.2.6.6.7 Details of the Software Unit

1. Read command-line parameters and validate (does specified CTS exist in
database?).

9/10/09 - 99 - DCS 104.4

2. Write parameters to ASCII capture file.
3. ftp login to specified CTS.
4. Send file to CTS.
5. Log-out.
6. rsh kill command to signal rdc_AutoCapture on CTS.

4.1.3 Back-up Archive Component

4.1.3.1 mac_BackupArchive

4.1.3.1.1 Unit Design Decisions

There are no special design decisions, such as algorithms used, for this unit.

4.1.3.1.2 Constraints, Limitations, or Unusual Features

There are no special constraints, limitations, or unusual features for this unit.

4.1.3.1.3 Programming Language

This unit will be implemented using the ANSI standard C programming language.

4.1.3.1.4 Procedural Commands

This module will use Pro C embedded SQL to update database records.

4.1.3.1.5 Inputs, Outputs, and Other Data Elements

The module will update table BACKUP_ACCT.

4.1.3.1.6 Software Unit Logic

The software unit contains the following logic:

4.1.3.1.6.1 Initiation

Conditions that may be in affect when mac_BackupArchive is initiated:
1. tape is being reused (i.e. at BOT, with registered tape-id)
2. tape is new (i.e. at BOT, no tape-id header).
3. tape has unregistered data (i.e. at BOT, with unregistered tape-id or

tape header date is newer than registered id)
4. tape is ready for appending another file (i.e. not at BOT, with room for

file).
5. tape is full (i.e. not at BOT, no room left for file).
6. no tape in drive.

4.1.3.1.6.2 Control

mac_BackupArchive will use rdc_Save to perform the copy to tape.

9/10/09 - 100 - DCS 104.4

4.1.3.1.6.3 Response

There are no specific responses or response times for each input, including data
conversion, renaming, and data transfer operations.

4.1.3.1.6.4 Sequence of Operations

The sequence of operations and dynamically controlled sequencing during the
software unit’s operation include:

4.1.3.1.6.4.1 Method of Sequence Control

The method for sequence control is defined by normal program flow within the
module.

4.1.3.1.6.4.2 Logic and Input Conditions

mac_BackupArchive will copy the indicated file to the backup tape device.
Therefore, the file must exist and the tape device must be ready.

4.1.3.1.6.4.3 Data Transfer in and out Of Memory

The data transfer in and out for memory is not a concern.

4.1.3.1.6.4.4 Discreet Inputs

There is no sensing of discreet input signals, and timing relationships between
interrupt operations within this software unit.

4.1.3.1.6.5 Exception and Error Handling

Exception and Error Handling will normally log appropriate journal messages, but
continue with normal operations (if possible).

4.1.3.1.6.6 Data Structure Charts

There are no significant data structures for this unit.

4.1.3.1.6.7 Details of the Software Unit

The basic flow of execution of the mac_BackupArchive software unit is depicted in
Figure 4-7.

9/10/09 - 101 - DCS 104.4

Figure 4-7 mac_BackupArchive Flowchart

4.1.4 Delete Raw Files Component (DDS)

4.1.4.1 mac_DeleteRawFiles

4.1.4.1.1 Unit Design Decisions

There are no special design decisions, such as algorithms used, for this unit.

4.1.4.1.2 Constraints, Limitations, or Unusual Features

There are no special constraints, limitations, or unusual features for this unit.

4.1.4.1.3 Programming Language

This unit will be implemented using the ANSI standard C programming language.

4.1.4.1.4 Procedural Commands

mac_DeleteRawFiles will use Pro C embedded SQL to update the
DCS_RAWFILE_ACCT table to show that the file is no longer on-line.

4.1.4.1.5 Inputs, Outputs, and Other Data Elements

The module updates table DCS_RAWFILE_ACCT to set the ON_LINE_FLAG.

4.1.4.1.6 Software Unit Logic

The software unit contains the following logic:

4.1.4.1.6.1 Initiation

Special conditions that may be in affect when mac_DeleteRawFiles is initiated:
1. The file may not be eligible for deletion. Eligibility is met by one of the

following:

launch rdc_Save return
success?

No

Yes
get tape_id,

file_pos from tape-
id file.

create record in
BACKUP_ACCT

rdc_Save

9/10/09 - 102 - DCS 104.4

a. The file is delivered to all archiving destinations.
b. The file is backed up to tape (in the DCS Backup/Archive).

2. The option to override eligibility checking was given.

4.1.4.1.6.2 Control

There are no transfers of control to other processing modules.

4.1.4.1.6.3 Response

There are no specific responses or response times for each input, including data
conversion, renaming, and data transfer operations.

4.1.4.1.6.4 Sequence of Operations

The sequence of operations and dynamically controlled sequencing during the
software unit’s operation include:

4.1.4.1.6.4.1 Method of Sequence Control

The method for sequence control is defined by normal program flow within the
module.

4.1.4.1.6.4.2 Logic and Input Conditions

mac_DeleteRawFiles will delete the raw file from on-line storage. Since the file
may not be archived, mac_DeleteRawFiles will verify with the database that the
file is archived prior to deletion.

4.1.4.1.6.4.3 Data Transfer in and out Of Memory

The data transfer in and out for memory is not a concern.

4.1.4.1.6.4.4 Discreet Inputs

There is no sensing of discreet input signals, and timing relationships between
interrupt operations within this software unit.

4.1.4.1.6.5 Exception and Error Handling

Exception and Error Handling will normally log appropriate journal messages, but
continue with normal operations (if possible).

4.1.4.1.6.6 Data Structure Charts

There are no significant data structures for this unit.

9/10/09 - 103 - DCS 104.4

4.1.4.1.6.7 Details of the Software Unit

Figure 4-8 mac_DeleteRawFiles Flowchart

4.1.5 Restage from Tape Component

4.1.5.1 mac_Restage

4.1.5.1.1 Unit Design Decisions

There are no special design decisions, such as algorithms used, for this unit.

4.1.5.1.2 Constraints, Limitations, or Unusual Features

There are no special constraints, limitations, or unusual features for this unit.

4.1.5.1.3 Programming Language

This unit will be implemented using the ANSI standard C programming language.

unconditional
delete?

file recv'd by all
destinations?

file in backup/
archive?

delete file / update
database

No

No

Yes

Yes

Yes

No abort with error

9/10/09 - 104 - DCS 104.4

4.1.5.1.4 Procedural Commands

This module will use Pro C embedded SQL to update database records.

4.1.5.1.5 Inputs, Outputs, and Other Data Elements

The module does not contain, receive, or output data.

4.1.5.1.6 Software Unit Logic

The software unit contains the following logic:

4.1.5.1.6.1 Initiation

Conditions that may be in affect when mac_Restage is initiated:
1. tape has registered data (i.e. with registered tape-id and header date is

same as registered header date)
2. tape has unregistered data (i.e. with unregistered tape-id or tape header

date is newer than registered id)
3. tape not rewound.
4. no tape in drive (or tape without header).

4.1.5.1.6.2 Control

mac_Restage will use tar to perform the copy from tape.

4.1.5.1.6.3 Response

There are no specific responses or response times for each input, including data
conversion, renaming, and data transfer operations.

4.1.5.1.6.4 Sequence of Operations

The sequence of operations and dynamically controlled sequencing during the
software unit’s operation include:

4.1.5.1.6.4.1 Method of Sequence Control

The method for sequence control is defined by normal program flow within the
module.

4.1.5.1.6.4.2 Logic and Input Conditions

mac_Restage will either copy the selected raw file from tape, or all raw files.
Therefore, the tape device must be ready and the local disk must have sufficient
available storage to hold the file.

4.1.5.1.6.4.3 Data Transfer in and out Of Memory

The data transfer in and out for memory is not a concern.

9/10/09 - 105 - DCS 104.4

4.1.5.1.6.4.4 Discreet Inputs

There is no sensing of discreet input signals, and timing relationships between
interrupt operations within this software unit.

4.1.5.1.6.5 Exception and Error Handling

Exception and Error Handling will normally log appropriate journal messages, but
continue with normal operations (if possible).

4.1.5.1.6.6 Data Structure Charts

There are no significant data structures for this unit.

4.1.5.1.6.7 Details of the Software Unit

Figure 4-9 depicts the top-level execution flow for module rdc_Restage.

NOTE: restage will place the rawfile into the DDS incoming raw file
directory. mac_UpdDCSAcct will move the rawfile to the mission-
specific rawfile directory.

9/10/09 - 106 - DCS 104.4

Figure 4-9 mac_Restage Flowchart

Initialize with
command line

options
get tape position at BOT? No

Yes

read tape headeris tape
registered?

Yes

No

restage all? Yes

log message

Noposition tape to
desired file

extract file

Yes

launch
mac_UpdDCSAcct

to ingest file

mac_UpdDCSAcctCreate/update
BACKUP_ACCT

record

EOM?

loop until EOM

extract file

rewind tape Yes

No

log message

rewind tape

launch
mac_UpdDCSAcct

to ingest file

is tape reused?

No

Yes

Delete existing
backup_acct

records for tape.

log message

Create/update
BACKUP_ACCT

record

9/10/09 - 107 - DCS 104.4

4.1.5.2 mac_UpdDCSAcct

4.1.5.2.1 Unit Design Decisions

There are no special design decisions, such as algorithms used, for this unit.

4.1.5.2.2 Constraints, Limitations, or Unusual Features

There are no special constraints, limitations, or unusual features for this unit.

4.1.5.2.3 Programming Language

This unit will be implemented using the ANSI standard C programming language.

4.1.5.2.4 Procedural Commands

This module will use Pro C embedded SQL to update database records.

4.1.5.2.5 Inputs, Outputs, and Other Data Elements

The module creates/updates records in table DCS_RAWFILE_ACCT and table
TRANSFER_ACCT.

4.1.5.2.6 Software Unit Logic

The software unit contains the following logic:

4.1.5.2.6.1 Initiation

Conditions that may be in affect when mac_UpdDCSAcct is initiated:
1. The DDS incoming rawfile directory may contain unregistered data. The

following will need to be performed:
a. The raw file will need to be moved to the mission-specific rawfile

directory.
b. The accounting files will need to be ingested into the database
c. The corresponding TRANSFER_ACCT records will need to be

created.
2. The raw data capture information may conflict with a previous raw data

file (e.g. the Scheduled_Start_Time, Original_Station, and
Capture_Source should uniquely identify the raw file).

4.1.5.2.6.2 Control

mac_UpdDCSAcct will pass control to another process.

4.1.5.2.6.3 Response

There are no specific responses or response times for each input; including data
conversion, renaming, and data transfer operations.

9/10/09 - 108 - DCS 104.4

4.1.5.2.6.4 Sequence of Operations

The sequence of operations and dynamically controlled sequencing during the
software unit’s operation include:

4.1.5.2.6.4.1 Method of Sequence Control

The method for sequence control is defined by normal program flow within the
module.

4.1.5.2.6.4.2 Logic and Input Conditions

mac_UpdDCSAcct will create database records (in DCS_RAWFILE_ACCT and
TRANSFER_ACCT) for new raw files.

4.1.5.2.6.4.3 Data Transfer in and out Of Memory

The data transfer in and out for memory is not a concern.

4.1.5.2.6.4.4 Discreet Inputs

There is no sensing of discreet input signals, and timing relationships between
interrupt operations within this software unit.

4.1.5.2.6.5 Exception and Error Handling

Exception and Error Handling will normally log appropriate journal messages, but
continue with normal operations (if possible).

4.1.5.2.6.6 Data Structure Charts

There are no significant data structures for this unit.

4.1.5.2.6.7 Details of the Software Unit

Figure 4-10 presents the top-level execution of module mac_UpdDCSAcct.

9/10/09 - 109 - DCS 104.4

Figure 4-10 mac_UpdDCSAcct Flowchart

loop through raw
files in DDS

incoming rawdata
directory

raw file
registered?

Create record in
DCS_RAWFILE_ACCT

Loop through destinations
for mission

(ROUTING_ACCT)

more
destinations?

Yes

more rawfiles
in directory?

No

Yes

No

Yes

No

duplicate
capture

parameters?

Yes

No

Issue error message

Issue error
message

Create record in
TRANSFER_ACCT
(XFER_STATUS =

INITIAL_XFER_STATUS).

move rawfile to
mission directory.

Previous
transfer

complete?
No

Yes

raw file re-
ingested?

No

Create record in
TRANSFER_ACCT
(XFER_STATUS =

UPDATE_XFER_STATUS).

Yes

Archive transfer records

9/10/09 - 110 - DCS 104.4

4.1.6 Journaling Component

4.1.6.1 mac_JournalFileEntry

4.1.6.1.1 Unit Design Decisions

There are no special design decisions, such as algorithms used, for this unit.

4.1.6.1.2 Constraints, Limitations, or Unusual Features

There are no special constraints, limitations, or unusual features for this unit.

4.1.6.1.3 Programming Language

This unit will be implemented using the ANSI standard C programming language.

4.1.6.1.4 Procedural Commands

There are no special procedural commands (such as menu selections in a
database management system (DBMS) for defining forms and exports, on-line
DBMS queries for database access and manipulation, input to a graphical user
interface (GUI) builder for automated code generation, commands to the
operating system, or shell scripts).

4.1.6.1.5 Inputs, Outputs, and Other Data Elements

The module will log the given message to the journal.

4.1.6.1.6 Software Unit Logic

The software unit contains the following logic:

4.1.6.1.6.1 Initiation

There are no special conditions in effect within the software unit when its execution
is initiated.

4.1.6.1.6.2 Control

There are no conditions under which control is passed to other software units.

4.1.6.1.6.3 Response

There are no specific responses or response times for each input; including data
conversion, renaming, and data transfer operations.

4.1.6.1.6.4 Sequence of Operations

The sequence of operations and dynamically controlled sequencing during the
software unit’s operation include:

9/10/09 - 111 - DCS 104.4

4.1.6.1.6.4.1 Method of Sequence Control

The method for sequence control is defined by normal program flow within the
module.

4.1.6.1.6.4.2 Logic and Input Conditions

The journaling component will utilize the Unix syslog facility. This facility will need
to be properly setup by the system administrator in order for the messages to be
logged.

4.1.6.1.6.4.3 Data Transfer in and out Of Memory

The data transfer in and out for memory is not a concern.

4.1.6.1.6.4.4 Discreet Inputs

There is no sensing of discreet input signals, and timing relationships between
interrupt operations within this software unit.

4.1.6.1.6.5 Exception and Error Handling

Exception and Error Handling will normally log appropriate journal messages, but
continue with normal operations (if possible).

4.1.6.1.6.6 Data Structure Charts

There are no significant data structures for this unit.

4.1.6.1.6.7 Details of the Software Unit

The mac_JournalFileEntry process will be reused without modification.

4.2 Capture Transfer Subsystem

4.2.1 AutoCapture Component

4.2.1.1 rdc_AutoCapture

4.2.1.1.1 Unit Design Decisions

There are no special design decisions, such as algorithms used, for this unit.

4.2.1.1.2 Constraints, Limitations, or Unusual Features

There are no special constraints, limitations, or unusual features for this unit.

9/10/09 - 112 - DCS 104.4

4.2.1.1.3 Programming Language

This unit is implemented using the ANSI standard C programming language.

4.2.1.1.4 Procedural Commands

There are no special procedural commands (such as menu selections in a
database management system (DBMS) for defining forms and exports, on-line
DBMS queries for database access and manipulation, input to a graphical user
interface (GUI) builder for automated code generation, commands to the
operating system, or shell scripts).

4.2.1.1.5 Inputs, Outputs, and Other Data Elements

The module does not contain, receive, or output data.

4.2.1.1.6 Software Unit Logic

The software unit contains the following logic:

4.2.1.1.6.1 Initiation

There are no special conditions in effect within the software unit when its execution
is initiated.

4.2.1.1.6.2 Control

There are no conditions under which control is passed to other software units.

4.2.1.1.6.3 Response

There are no specific responses or response times for each input, including data
conversion, renaming, and data transfer operations.

4.2.1.1.6.4 Sequence of Operations

The sequence of operations and dynamically controlled sequencing during the
software unit’s operation include:

4.2.1.1.6.4.1 Method of Sequence Control

The method for sequence control is defined by normal program flow within the
module.

4.2.1.1.6.4.2 Logic and Input Conditions

There are no special logic and input conditions of the method, such as timing
variations or priority assignments.

9/10/09 - 113 - DCS 104.4

4.2.1.1.6.4.3 Data Transfer in and out Of Memory

The data transfer in and out for memory is not a concern.

4.2.1.1.6.4.4 Discreet Inputs

There is no sensing of discreet input signals, and timing relationships between
interrupt operations within this software unit.

4.2.1.1.6.5 Exception and Error Handling

Exception and Error Handling will normally log appropriate journal messages, but
continue with normal operations (if possible).

4.2.1.1.6.6 Data Structure Charts

There are no significant data structures for this unit.

4.2.1.1.6.7 Details of the Software Unit

Figure 4-11 shows the top-level execution flow for module rdc_AutoCapture.

9/10/09 - 114 - DCS 104.4

Figure 4-11 rdc_AutoCapture Flowchart

4.2.1.2 rdc_AutoTransfer

4.2.1.2.1 Unit Design Decisions

There are no special design decisions, such as algorithms used, for this unit.

AutoCapture
already running? Yes

No

wait for next
scheduled capture
or manual capture

signal

get capture
and MWD
Formatter

Setup
parameters

Launch
rdc_Capture for

each Myriad Logic
channel device

installed.

Wait for all
captures to
complete

Launch
rdc_AutoTransfer

exit with msg

read schedule and
config parameters

Auto Transfer

MWD Formatter

rdc_Capture

Launch MWD
Formatter

rdc_Capture

9/10/09 - 115 - DCS 104.4

4.2.1.2.2 Constraints, Limitations, or Unusual Features

There are no special constraints, limitations, or unusual features for this unit.

4.2.1.2.3 Programming Language

This unit is implemented using the ANSI standard C programming language.

4.2.1.2.4 Procedural Commands

There are no special procedural commands (such as menu selections in a
database management system (DBMS) for defining forms and exports, on-line
DBMS queries for database access and manipulation, input to a graphical user
interface (GUI) builder for automated code generation, commands to the
operating system, or shell scripts).

4.2.1.2.5 Inputs, Outputs, and Other Data Elements

The module does not contain, receive, or output data.

4.2.1.2.6 Software Unit Logic

The software unit contains the following logic:

4.2.1.2.6.1 Initiation

There are no special conditions in effect within the software unit when its execution
is initiated.

4.2.1.2.6.2 Control

There are no conditions under which control is passed to other software units.

4.2.1.2.6.3 Response

There are no specific responses or response times for each input, including data
conversion, renaming, and data transfer operations.

4.2.1.2.6.4 Sequence of Operations

The sequence of operations and dynamically controlled sequencing during the
software unit’s operation include:

4.2.1.2.6.4.1 Method of Sequence Control

The method for sequence control is defined by normal program flow within the
module.

9/10/09 - 116 - DCS 104.4

4.2.1.2.6.4.2 Logic and Input Conditions

There are no special logic and input conditions of the method, such as timing
variations or priority assignments.

4.2.1.2.6.4.3 Data Transfer in and out Of Memory

The data transfer in and out for memory is not a concern.

4.2.1.2.6.4.4 Discreet Inputs

There is no sensing of discreet input signals, and timing relationships between
interrupt operations within this software unit.

4.2.1.2.6.5 Exception and Error Handling

Exception and Error Handling will normally log appropriate journal messages, but
continue with normal operations (if possible).

4.2.1.2.6.6 Data Structure Charts

There are no significant data structures for this unit.

4.2.1.2.6.7 Details of the Software Unit

Figure 4-11 shows the top-level execution flow for module rdc_AutoTransfer.

9/10/09 - 117 - DCS 104.4

Figure 4-12 rdc_AutoTransfer Flowchart

AutoTransfer
already running? Yes

No

Transfer to
DDS?

Yes

No

Launch
rdc_TransferFiles

Launch rdc_Save

Delete after
transfer?

Yes

Launch
rdc_DeleteFiles

No

hold files? Yes

No

Loop through on-
line files.

exit with msg

read config
parameters

Transfer to
Tape?

Yes

Wait 10 minutes

Noexit with msg

9/10/09 - 118 - DCS 104.4

4.2.2 Raw Data Capture Component

4.2.2.1 rdc_Capture

4.2.2.1.1 Unit Design Decisions

There are no special design decisions, such as algorithms used, for this unit.

4.2.2.1.2 Constraints, Limitations, or Unusual Features

rdc_Capture makes use of some IRIX-specific realtime features (see the REACT
man page). Some of these features will require special privileges.

4.2.2.1.3 Programming Language

This unit will be implemented using the ANSI standard C programming language.

4.2.2.1.4 Procedural Commands

There are no special procedural commands (such as menu selections in a
database management system (DBMS) for defining forms and exports, on-line
DBMS queries for database access and manipulation, input to a graphical user
interface (GUI) builder for automated code generation, commands to the
operating system, or shell scripts).

4.2.2.1.5 Inputs, Outputs, and Other Data Elements

rdc_Capture reads one stream of raw wideband data received via the Myriad Logic
capture device and writes the raw data directly to a disk file. The module also
creates an associated accounting file.

4.2.2.1.6 Software Unit Logic

The software unit contains the following logic:

4.2.2.1.6.1 Initiation

The Myriad Logic serial capture is expected to be ready to receive the wideband
data. All non-essential processes that may interfere with capture are expected to
be suspended.

4.2.2.1.6.2 Control

There are no conditions under which control is passed to other software units.

4.2.2.1.6.3 Response

rdc_Capture needs to read and write raw data at a minimum rate of 75 Megabits
per second (approximately 9 megabytes per second).

Comment [bjp5]: May be able to eliminate
this.

9/10/09 - 119 - DCS 104.4

4.2.2.1.6.4 Sequence of Operations

The sequence of operations and dynamically controlled sequencing during the
software unit’s operation include:

4.2.2.1.6.4.1 Method of Sequence Control

The method for sequence control is defined by normal program flow within the
module.

4.2.2.1.6.4.2 Logic and Input Conditions

rdc_Capture will write a stream of incoming wideband data to disk. The disk needs
to have sufficient available storage for the incoming data.

4.2.2.1.6.4.3 Data Transfer in and out Of Memory

The data transfer in and out for memory is not a concern.

4.2.2.1.6.4.4 Discreet Inputs

There is no sensing of discreet input signals, and timing relationships between
interrupt operations within this software unit.

4.2.2.1.6.5 Exception and Error Handling

Exception and Error Handling will normally log appropriate journal messages, but
continue with normal operations (if possible).

4.2.2.1.6.6 Data Structure Charts

There are no significant data structures for this unit.

4.2.2.1.6.7 Details of the Software Unit

Figure 4-13 shows the top-level execution flow for module rdc_Capture.

9/10/09 - 120 - DCS 104.4

Figure 4-13 rdc_Capture Flowchart

4.2.3 Transfer To Tape Component

4.2.3.1 rdc_Save

4.2.3.1.1 Unit Design Decisions

There are no special design decisions, such as algorithms used, for this unit.

4.2.3.1.2 Constraints, Limitations, or Unusual Features

There are no special constraints, limitations, or unusual features for this unit.

Initialize Myriad
Device

duration = LOS -
current system

time

Capture data to
disk for entire

duration

Create accounting
file

LOS > current
system time? Yes

duration = LOS -
AOS

No

set rawfile and
accounting file to

be read-only

9/10/09 - 121 - DCS 104.4

4.2.3.1.3 Programming Language

This unit will be implemented using the ANSI standard C programming language.

4.2.3.1.4 Procedural Commands

There are no special procedural commands (such as menu selections in a
database management system (DBMS) for defining forms and exports, on-line
DBMS queries for database access and manipulation, input to a graphical user
interface (GUI) builder for automated code generation, commands to the
operating system, or shell scripts).

4.2.3.1.5 Inputs, Outputs, and Other Data Elements

The module does not contain, receive, or output data.

4.2.3.1.6 Software Unit Logic

The software unit contains the following logic:

4.2.3.1.6.1 Initiation

Conditions that may be in affect when rdc_Save is initiated:
1. tape is being reused (i.e. at BOT, with registered tape-id)
2. tape is new (i.e. at BOT, no tape-id header).
3. tape has unregistered data (i.e. at BOT, with unregistered tape-id or

tape header date is newer than registered id)
4. tape is ready for appending another file (i.e. not at BOT, with room for

file).
5. tape is full (i.e. not at BOT, no room left for file).
6. no tape in drive.

4.2.3.1.6.2 Control

The software unit utilizes the ‘tar’ command to write the files to tape.

4.2.3.1.6.3 Response

There are no specific responses or response times for each input, including data
conversion, renaming, and data transfer operations.

4.2.3.1.6.4 Sequence of Operations

The sequence of operations and dynamically controlled sequencing during the
software unit’s operation include:

4.2.3.1.6.4.1 Method of Sequence Control

The method for sequence control is defined by normal program flow within the
module.

9/10/09 - 122 - DCS 104.4

4.2.3.1.6.4.2 Logic and Input Conditions

rdc_Save will copy the indicated file to tape. Therefore, the tape device must be
ready to received the file.

4.2.3.1.6.4.3 Data Transfer in and out Of Memory

The data transfer in and out for memory is not a concern.

4.2.3.1.6.4.4 Discreet Inputs

There is no sensing of discreet input signals, and timing relationships between
interrupt operations within this software unit.

4.2.3.1.6.5 Exception and Error Handling

Exception and Error Handling will normally log appropriate journal messages, but
continue with normal operations (if possible).

4.2.3.1.6.6 Data Structure Charts

There are no significant data structures for this unit.

4.2.3.1.6.7 Details of the Software Unit

9/10/09 - 123 - DCS 104.4

Figure 4-14 rdc_Save Flowchart

4.2.3.2 rdc_GenStackedLabel

4.2.3.2.1 Unit Design Decisions

There are no special design decisions, such as algorithms used, for this unit.

4.2.3.2.2 Constraints, Limitations, or Unusual Features

There are no special constraints, limitations, or unusual features for this unit.

4.2.3.2.3 Programming Language

This unit will be implemented using the ANSI standard C programming language.

4.2.3.2.4 Procedural Commands

There are no special procedural commands (such as menu selections in a
database management system (DBMS) for defining forms and exports, on-line

open tape device,
read tape status

Beginning of
Tape?

No

Yes read tape header
via tar

valid header?

End of Data? No

age-checking
bypass given?

Yes

No

Yes

create new header

write header to
tape via tar

Yes

header too
young?

No

Yes

No

update header

room for file?

No

Yes

write acct and data
files to tape via tar

Remove previous DB
records here (on DDS)

9/10/09 - 124 - DCS 104.4

DBMS queries for database access and manipulation, input to a graphical user
interface (GUI) builder for automated code generation, commands to the
operating system, or shell scripts).

4.2.3.2.5 Inputs, Outputs, and Other Data Elements

The module does not contain, receive, or output data.

4.2.3.2.6 Software Unit Logic

The software unit contains the following logic:

4.2.3.2.6.1 Initiation

Conditions that may be in affect when rdc_Save is initiated:
1. tape is being reused (i.e. at BOT, with registered tape-id)
2. tape is new (i.e. at BOT, no tape-id header).
3. tape has unregistered data (i.e. at BOT, with unregistered tape-id or tape

header date is newer than registered id)
4. tape is ready for appending another file (i.e. not at BOT, with room for file).
5. tape is full (i.e. not at BOT, no room left for file).
6. no tape in drive.

4.2.3.2.6.2 Control

The software unit utilizes the ‘tar’ command to write the files to tape.

4.2.3.2.6.3 Response

There are no specific responses or response times for each input, including data
conversion, renaming, and data transfer operations.

4.2.3.2.6.4 Sequence of Operations

The sequence of operations and dynamically controlled sequencing during the
software unit’s operation include:

4.2.3.2.6.4.1 Method of Sequence Control

The method for sequence control is defined by normal program flow within the
module.

4.2.3.2.6.4.2 Logic and Input Conditions

rdc_Save will copy the indicated file to tape. Therefore, the tape device must be
ready to received the file.

9/10/09 - 125 - DCS 104.4

4.2.3.2.6.4.3 Data Transfer in and out Of Memory

The data transfer in and out for memory is not a concern.

4.2.3.2.6.4.4 Discreet Inputs

There is no sensing of discreet input signals, and timing relationships between
interrupt operations within this software unit.

4.2.3.2.6.5 Exception and Error Handling

Exception and Error Handling will normally log appropriate journal messages, but
continue with normal operations (if possible).

4.2.3.2.6.6 Data Structure Charts

There are no significant data structures for this unit.

4.2.3.2.6.7 Details of the Software Unit

Summary of New Module rdc_GenStackedLabel.c:
1) If tape id and hostname are given on the command line

a) Fetch id # from command line.
b) Fetch hostname from command line.

2) else
a) Fetch id # from tape_id file, and increment.
b) Fetch hostname from system.

3) Print tape label (Project Name, hostname-tape_id, date)

4.2.4 Delete Raw Files Component (CTS)

4.2.4.1 rdc_Delete

4.2.4.1.1 Unit Design Decisions

There are no special design decisions, such as algorithms used, for this unit.

4.2.4.1.2 Constraints, Limitations, or Unusual Features

There are no special constraints, limitations, or unusual features for this unit.

4.2.4.1.3 Programming Language

This unit will be implemented using the ANSI standard C programming language.

4.2.4.1.4 Procedural Commands

There are no special procedural commands (such as menu selections in a
database management system (DBMS) for defining forms and exports, on-line

9/10/09 - 126 - DCS 104.4

DBMS queries for database access and manipulation, input to a graphical user
interface (GUI) builder for automated code generation, commands to the
operating system, or shell scripts).

4.2.4.1.5 Inputs, Outputs, and Other Data Elements

The module does not contain, receive, or output data.

4.2.4.1.6 Software Unit Logic

The software unit contains the following logic:

4.2.4.1.6.1 Initiation

The file to be deleted may have read-only protection, which would indicate that the
file has not been sent to DDS or copied to tape. If the file does not have read-
only protection, the presumption is that it has been either sent to DDS or copied
to tape.

4.2.4.1.6.2 Control

There are no conditions under which control is passed to other software units.

4.2.4.1.6.3 Response

There are no specific responses or response times for each input, including data
conversion, renaming, and data transfer operations.

4.2.4.1.6.4 Sequence of Operations

The sequence of operations and dynamically controlled sequencing during the
software unit’s operation include:

4.2.4.1.6.4.1 Method of Sequence Control

The method for sequence control is defined by normal program flow within the
module.

4.2.4.1.6.4.2 Logic and Input Conditions

rdc_Delete will delete the raw data file and its associated accounting file.
Therefore, the permissions must be set on the files to allow the deletion.

4.2.4.1.6.4.3 Data Transfer in and out Of Memory

The data transfer in and out for memory is not a concern.

9/10/09 - 127 - DCS 104.4

4.2.4.1.6.4.4 Discreet Inputs

There are no sensing of discreet input signals, and timing relationships between
interrupt operations within this software unit.

4.2.4.1.6.5 Exception and Error Handling

Exception and Error Handling will normally log appropriate journal messages, but
continue with normal operations (if possible).

4.2.4.1.6.6 Data Structure Charts

There are no significant data structures for this unit.

4.2.4.1.6.7 Details of the Software Unit

Figure 4-15 rdc_DeleteFiles Flow Chart

4.2.5 Raw File Transfer Component (CTS)

4.2.5.1 rdc_Transfer

4.2.5.1.1 Unit Design Decisions

There are no special design decisions, such as algorithms used, for this unit.

check read-only
status of file

read-only set? Yes

No

delete raw file
and acct file

Issue error

unconditional?

Yes

No
Issue

warning,
remove

protection
read-only set?

Yes

9/10/09 - 128 - DCS 104.4

4.2.5.1.2 Constraints, Limitations, or Unusual Features

There are no special constraints, limitations, or unusual features for this unit.

4.2.5.1.3 Programming Language

This unit will be implemented using the ANSI standard C programming language.

4.2.5.1.4 Procedural Commands

There are no special procedural commands (such as menu selections in a
database management system (DBMS) for defining forms and exports, on-line
DBMS queries for database access and manipulation, input to a graphical user
interface (GUI) builder for automated code generation, commands to the
operating system, or shell scripts).

4.2.5.1.5 Inputs, Outputs, and Other Data Elements

The module does not contain, receive, or output data.

4.2.5.1.6 Software Unit Logic

The software unit contains the following logic:

4.2.5.1.6.1 Initiation

There are no special conditions in effect within the software unit when its execution
is initiated.

4.2.5.1.6.2 Control

The software unit utilizes the ‘mac_UpdDCSAcct’ command to notify the DDS of
available files.

4.2.5.1.6.3 Response

There are no specific responses or response times for each input, including data
conversion, renaming, and data transfer operations.

4.2.5.1.6.4 Sequence of Operations

The sequence of operations and dynamically controlled sequencing during the
software unit’s operation include:

4.2.5.1.6.4.1 Method of Sequence Control

The method for sequence control is defined by normal program flow within the
module.

9/10/09 - 129 - DCS 104.4

4.2.5.1.6.4.2 Logic and Input Conditions

rdc_Transfer will send the raw data file and its associated accounting file to the
DDS, as well as executing the mac_UpdDCSAcct to register the new file on the
DDS. Therefore, the DDS must be ready to receive the file, mac_UpdDCSAcct
must be executable, and the DCS database must be ready.

4.2.5.1.6.4.3 Data Transfer in and out Of Memory

The data transfer in and out for memory is not a concern.

4.2.5.1.6.4.4 Discreet Inputs

There are no sensing of discreet input signals, and timing relationships between
interrupt operations within this software unit.

4.2.5.1.6.5 Exception and Error Handling

Exception and Error Handling will normally log appropriate journal messages, but
continue with normal operations (if possible).

4.2.5.1.6.6 Data Structure Charts

There are no significant data structures for this unit.

4.2.5.1.6.7 Details of the Software Unit

Figure 4-16 rdc_TransferFile Flow Chart

Get ftp login
parameters

Get names of on-
line files

ftp login to DDS,
push raw file, push

acct file

mac_UpdDCSAcctrexec
mac_UpdRDCAcct

Remove read-only
protection from
transferred file

9/10/09 - 130 - DCS 104.4

4.2.6 Raw Data Transmit Component

4.2.6.1 rdc_Transmit

4.2.6.1.1 Unit Design Decisions

There are no special design decisions, such as algorithms used, for this unit.

4.2.6.1.2 Constraints, Limitations, or Unusual Features

There are no special constraints, limitations, or unusual features for this unit.

4.2.6.1.3 Programming Language

This unit will be implemented using the ANSI standard C programming language.

4.2.6.1.4 Procedural Commands

There are no special procedural commands (such as menu selections in a
database management system (DBMS) for defining forms and exports, on-line
DBMS queries for database access and manipulation, input to a graphical user
interface (GUI) builder for automated code generation, commands to the
operating system, or shell scripts).

4.2.6.1.5 Inputs, Outputs, and Other Data Elements

The module does not contain, receive, or output data.

4.2.6.1.6 Software Unit Logic

The software unit contains the following logic:

4.2.6.1.6.1 Initiation

There are no special conditions in effect within the software unit when its execution
is initiated.

4.2.6.1.6.2 Control

There are no conditions under which control is passed to other software units.

4.2.6.1.6.3 Response

There are no specific responses or response times for each input, including data
conversion, renaming, and data transfer operations.

4.2.6.1.6.4 Sequence of Operations

The sequence of operations and dynamically controlled sequencing during the
software unit’s operation include:

9/10/09 - 131 - DCS 104.4

4.2.6.1.6.4.1 Method of Sequence Control

The method for sequence control is defined by normal program flow within the
module.

4.2.6.1.6.4.2 Logic and Input Conditions

rdc_Transmit will copy the indicated file out through the Myriad Logic high-speed
serial device. Therefore, the file must be readable and the serial device must be
ready for transmit.

4.2.6.1.6.4.3 Data Transfer in and out Of Memory

The data transfer in and out for memory is not a concern.

4.2.6.1.6.4.4 Discreet Inputs

There is no sensing of discreet input signals, and timing relationships between
interrupt operations within this software unit.

4.2.6.1.6.5 Exception and Error Handling

Exception and Error Handling will normally log appropriate journal messages, but
continue with normal operations (if possible).

4.2.6.1.6.6 Data Structure Charts

There are no significant data structures for this unit.

4.2.6.1.6.7 Details of the Software Unit

There are no changes planned for this software unit (other than updating the
rdc_DeviceFunctions module for the Myriad Logic capture card).

4.2.7 Journaling Component

The Journaling Component on the CTS will reuse the journaling component on the
DDS.

4.3 MWD Formatter Component

4.3.1 Purpose
The MWD formatter component is responsible for accepting one or more serial streams
of raw data from the RDC component and producing formatted output for the MWD
component. The current design of the MWD formatter component will support two data
formats:

9/10/09 - 132 - DCS 104.4

• Enhanced Thematic Mapper Plus (ETM+) data from Landsat 7 (L7)
• Thematic Mapper (TM) from Landsat 5 (L5).

For convenience, these will be called L7 format and L5 format in the rest of this
discussion. These data streams are generally acquired in real-time from a ground
station and forwarded to the CTS for processing. However, the data streams may also
be played back at a later time from a recorder in the receiving equipment. The design
of this system will handle both data acquired in real time, and data that is played back
later.

The MWD Formatter component is an application that is initially run as a child process
of the rdc_AutoCapture component. When started, the application is passed the name
of an initialization file that configures the application to process format that will be
acquired. The MWD Formatter will then start up one or more processing “strings” that
handle a data stream. For the L7 format there are two streams, one for the I channel,
and the other for the Q channel. For the L5 formatter, there is a single data stream.

Each of the processing “strings” will be made of up 3 processing objects: an ingest
object, a frame sync object, and a formatter object. The ingest object will acquire its
data from a ring buffer that is represented by an “RDC’ object. Between the ingest and
frame sync objects there will be a FIFO object. Similarly, between the frame sync and
formatter objects there will also be a FIFO object. These FIFO objects are
synchronized ring buffers that are used to temporarily stack data as needed. The
formatter object will write its data to an MWD object. Figure X.1 depicts this
architecture.

Each of the three processing objects may construct multiple internal objects including
multiple thread objects. Minimally, there will be one distinct thread for each of the three
main objects. Each of the objects may instantiate additional threads as necessary.
The reason for running these multiple threads is to spread the workload out on a
multiprocessor machine. Both the frame synchronization and the formatting functions
are CPU intensive. By running these two on separate threads they will run on separate
processors (as needed) to provide more overall throughput.

9/10/09 - 133 - DCS 104.4

Processing String

Main

Control

Frame
SyncIngest Formatter

FIFO FIFO

Serial
in from
RDC

Formatted
out to
MWD

RDC MWD

Figure 4-17 Processing String

4.3.2 Subcomponent Design
As already implied, object-oriented programming will be used to implement the MWD
formatter. The 7 main subcomponents (Control, Ingest, Frame Sync, Formatter, RDC,
FIFO, and MWD) will all be implemented as objects. For the Frame Sync and
Formatter objects, there is a different subclass for each data format. There are
numerous other supporting objects that will also be used in the implementation of this
system. Each of the following subsections will describe the functionality provided by a
single source file of the system. In many cases, this source will consist of a single
object, but in others there will be a set of related objects.

4.3.2.1 MWDFormatter
This source will contain the ‘main’ method. For this system, the main method is very
simple. It will:

1. Parse the command line to get the initialization file name and the CTD to use.
2. Initialize the logging system
3. Call the static “initialize” method of the Control class
4. Call static “initialize” methods for each of the main subcomponents

9/10/09 - 134 - DCS 104.4

5. Call static “run” method for the control class
6. Exit

The main method will look something like this (some code is excluded for clarity):

int main(int argc, char* argv[]) {
 // parse command line
 ...
..// initialize logging
 ...
 // Initialize the control system
 Control::initialize(initfile);
..// Initialize ingest subcomponents
 RDCIngest::initialize(initfile); // For Operations
 DiskIngest::initialize(initfile); // For Testing
 // initialize frame sync subcomponents
 L7FrameSync::initialize(initfile);
 L5FrameSync::initialize(initfile);
 // initialize formatter subcomponents
 L7Formatter::initialize(initfile);
 L5Formatter::initialize(initfile);
 // start processing
..int status = Control::run();
 return status;
}

The command line syntax for running this application will be:

MWDFormatter [–c <initfile>] [-d <display>] [–f <streamfile>]

• initfile is the name of the initialization file to use. It is expected that there will be at

least 4 initialization files one set for RDCIngest, one for DiskIngest, each with a L7
and an L7 variant.

• display is the number of the CTD to run. Used in configuration with configuration
information in the initfile to determine the IP address to use for the display PC

• streamfile is a pathname to a bitfile, used for testing purposes only. Will only be
used if a DiskIngest is being run.

The Control initialize method will create the FIFO and MWD components needed for
processing the format.

Each of the other significant subcomponents will parse the initialization file to find out
how many instances of the object to create. For each instance to be created, the object
is created using initialization information for the object from the initialization file. Each
object is then “plugged in” to the Modules class so that it can be accessed by the
Control or other objects.

9/10/09 - 135 - DCS 104.4

The design for this release of the MWDFormatter is limited to processing two data
formats, L7 and L5. However, there is an implied requirement for the CTS to be
expandable to other data formats in the future. To add other formats, all that will be
required is to write new descendent classes of the abstract Frame Sync and Formatter
classes to implement the code specific to those formats, and then to call the static
“initialize” methods of these classes in the main function. In other words, the only
existing source that will need to be modified is the MWDFormatter source.

4.3.2.2 Main Classes

4.3.2.2.1 Modules
The Modules class acts as a global area for the main objects of the system so that they
can see each other. This class will be comprised entirely of static methods. Internally,
there will be 6 vectors (see the section describing Containers class) into which the main
modules of the system will be inserted. These are:

• Ingest modules
• Raw data FIFOs
• Frame Sync modules
• Frame Data FIFOs
• Formatter Modules
• MWD Interfaces

Each of these vectors will hold a single entry for L5 data, and two entries for L7 data.
The FIFO and MWD Interface objects will be constructed by the Control class based on
the contents of the initialization file. After construction these objects will be inserted into
the Modules arrays using one of the addXXX methods. To retrieve a reference to one
of the objects, a call to the getXXX method is used. The following is a list of all the
methods provided:
// Add methods
// return instance number 1-N
static int addIngest(Ingest* ingest);
static int addRawFIFO(FIFO* fifo);
static int addFrameSync(FrameSync* framesync);
static int addFrameFIFO(FIFO* fifo);
static int addFormatter(Formatter* formatter);

// Get methods
// accept instance number, return object reference
static Ingest* getIngest(int number);
static FIFO* getRawFIFO(int number);
static FrameSync* getFrameSync(int number);
static FIFO* getFrameFIFO(int number);
static Formatter* getFormatter(int number);

The primary use of the Modules class is for the Control class to find the objects of
interest. Note that the Ingest, FrameSync, and Formatter object references in the
Modules class are of abstract class types, so the Control and other classes referencing

9/10/09 - 136 - DCS 104.4

these objects do not know the actual type. This allows any type of Ingest, FrameSync,
or Formatter module to be plugged into the infrastructure in support of new formats in
the future.

One other notable use of the Modules class is for channel swaps in the L7 data format.
It is never known beforehand which of the two serial streams (I or Q) for L7 data
contains which channel (1 or 2). It is only after the L7FrameSync extracts the frames
from the raw data that the channel number is known. The L7FrameSync will place the
frame data into the FrameFIFO with the instance number corresponding to the channel
number. It does this by doing something like:

// Get the correct output FIFO to use for the channel
FIFO* fifo = Modules::getFrameFIFO(channel_number);
// Write the frame to the FIFO
int fifo->write(frame);

4.3.2.2.2 Control
The Control class is responsible for coordinating the activities of the three main objects
that are required to produce MWD output from a serial stream. For the L7 format, the
Control object will be responsible for managing two sets of the three objects, one for
each data stream.

The static initialize method of the control class will first read the initialization file to
determine how many FIFO and MWD objects are to be constructed. Each constructed
object will be placed into a FIFO or an MWD object array in the Modules class. The
initialization method must be called before all other main class initialize methods.

After all main class initialize methods are called, the static run method of the control
class will be called. The run method performs the following steps:

1. It calls the prepare methods for each object in forward order (Ingest, Frame

Sync, then Formatter). For L7, the methods are called in pairs, both Ingests,
then both Frame Syncs, then both Formatters. These methods open files,
start threads, and do other initialization required for the formatting operation.
If any error is returned from these methods, the formatting operation is
shutdown.

2. It calls the go methods for each object in reverse order (Formatter, Frame
Sync, then Ingest). Again, these methods are called in pairs for L7
processing. These methods start the processing. No errors are expected to
be returned here.

3. It loops, repeatedly calling the isStopped method for each of the objects to
see if the processing has completed. This loop will independently check for
stopping on the two sides for L7. For L7, the loop will continue until at least
one object of both sets has indicated it has stopped.

9/10/09 - 137 - DCS 104.4

4. It calls the stop method for each object. These methods clean up processing,
closing any files that are open.

The run method will log any errors that it finds during processing to the log file. Again,
for L7, processing will continue until both streams have stopped or failed. If any error is
found during processing, the run method will return a negative value. Otherwise, the
run method returns 0 for success.

A synopsis of the two entry points for the Control class follows:
// public methods defined by control
static int initialize(InitFile *initfile);
static int run();

4.3.2.2.3 FIFO
FIFOs are used to pass fixed length blocks of data between shared processes created
using the Thread class (described in a later section). These routines utilize shared data
areas for passing the data and standard Thread synchronization methods, so they will
not work for processes created without using the Thread class. The amount of data
used by the FIFO is the number of blocks in the FIFO times the size of each block.
There are no coded restrictions on size, but obviously there are practical limits imposed
by the computer hardware and operating system.

A FIFO is a rotating buffer of data blocks that is filled by one or more writer processes
and read by one or more reader processes. Writers and readers are both referred to as
users.

Writers are allowed to pass the block number they are writing to the FIFO routines.
This way, multiple writers can use the FIFO at the same time. A writer attempting to
write a block other than the next block that goes into the FIFO will wait until the other
writers supply the intervening blocks. A write will also have to wait for space to become
available in a FIFO in the event all blocks are filled. For single writer applications,
writers can use the form of the write call that does not have a block number to write the
next block.

There are two types of readers (as defined by the FIFO attach call). The first type
(AttachReadAll) is a process that only wants to read every block from from the FIFO.
The second (AttachReadNext) is more complex, and that is a process that intends to
interleave access with all other AttachReadNext readers of the FIFO. It is possible to
have both types attached to the same FIFO. However, it is not possible to have
multiple sets of AttachReadNext readers that collectively get all blocks (in other words,
there is exactly one set of AttachReadNext readers that collectively get all blocks).
Readers have the option to wait or not wait when there is no data available.

9/10/09 - 138 - DCS 104.4

The following table presents a synopsis of the FIFO methods that are publicly available:
Method Description
FIFO(int blocksize, int
blockcount)

Construct the FIFO

int attach(FIFOAttachType
attachtype)

Attach to a FIFO, attachtype is one of:
AttachWrite Attach for writing
AttachReadAll Attach to read all blocks
AttachReadNext Attach to read next block

int readBlock(void* block,
bool nowait)

Read a block from the FIFO, wait if no blocks are
available and nowait is true, returns block number or –
1 if no blocks available

int writeBlock(void* block,
int blocknumber)

Write specified block number to FIFO, waits if FIFO is
full

int write(void* block) Write next block to FIFO
int getBlockSize(void) const Get the size of a block in the FIFO
int getBlockCount(void) const Get the number of blocks in the FIFO
void shutdown(void) Shutdown the FIFO, causes all FIFO uses to get a

FIFO_STATUS_SHUTDOWN on next read/write
attempt

~FIFO(void) Destructor, cleans up, should only be used when no
more read/write attempts will be made by other users
of FIFO

4.3.2.2.4 MWD
Each instance of this class that implements a client to a PC-based MWD. The MWD
object takes care of all the behind the scenes socket communications with the PC.

The typical sequence of events for a MWD video session is as follows:

9/10/09 - 139 - DCS 104.4

// Create an MWD object
MWD* mwd = new MWD();
// Connect it to the right display
mwd->connect(“somehost.somewhere”,someport);
// Initialize the MWD
mwd->init(someformat,somebandcount,somebandIDs,somepixelcount);
// Loop outputs data and text
while (!done)
{
 // get some video
 ...
 // output line to MWD
 mwd->video(bandnumber,linenumber,video);
 // get a caption
 ...
 // output caption
 mwd->caption(linenumber,captiontext,captioncolor,captionalign);
}
// disconnect from the MWD, and delete object
mwd->disconnect();
delete mwd;

9/10/09 - 140 - DCS 104.4

A description of the public methods of the MWD class is presented in the following
table:
Method Description
MWD() Construct the MWD object, is initially not connected
MWDStatus connect(
const string &host, int port)

Connect to the MWD, must precede call to initialize.
The host argument is a string, in either the
“host.domain” format or in the “n.n.n.n” numeric IP
address format. The port is the port number the MWD
has been configured to listen on.

MWDStatus init(
const string &format,
unsigned char band_count,
const string &bandIDs,
short pixel_count)

Initialize the MWD. This method must be called
before any other method except the constructor and
initialize. The format is a string that is displayed on
the MWD for data format. This format is also used to
select a default setup for the MWD (bands displayed
and any contrast enhancement in use). The band
count is the number of bands that will be transferred to
the MWD. The band IDs are a set of characters that
will be displayed for each band (e.g., you could set the
bands IDs to ‘ABC’ so the first band would be ‘A’).
The pixel count are the number of pixels for each
band. If the 4 parameters all match the last value
used to initialize the MWD, this call is functionally
equivalent to the intervalStart method below.

MWDStatus intervalStart(void) Start a new interval on the MWD. Causes the MWD
to reset its line numbering so that the next line that will
be displayed is number 1. This call also discards any
captions that have been stored at line numbers past
the last video line received.

MWDStatus video(
unsigned char band_number,
int line_number,
const unsigned char* const
videodata)

Send a line of video to the MWD. If the MWD is in
autoscroll mode and the line number argument of this
call is the highest yet seen since the last intervalStart
or init call, the display will scroll to make this line the
bottom visible line. Line numbers must be:

• Greater than zero
• Less than the highest line number seen plus

some big constant (currently 4096 lines)
• Greater than the last number seen for the

band number
The line numbers do not have to be consecutively
higher than the last largest line number for the band.
If they are not, the MWD will automatically fill the
missing data with black lines. The MWD also
supports BSQ formats where you send lines 1-N for
one band, then lines 1-N for another band (bands do
not need to be in ascending order)

MWDStatus caption(int line_number,
const string &caption_text,
const MWDColor color,
const MWDAlignment alignment)

Send a caption to the MWD. The line number of the
caption can be any line number greater than zero.
Unlike the video command, the MWD will not scroll to
make line number containing the caption visible.

MWDStatus gap(int size,
const string &caption text,
const MWDColor color)

Insert a black gap after the highest video line that has
been received by the MWD. A caption is displayed
next to the gap. This method also starts a new
interval like the startInterval method above

MWDStatus disconnect(void) Disconnect from the MWD

9/10/09 - 141 - DCS 104.4

~MWD(void) Destructor, first disconnects if not disconnected, then
cleans up

In the above table there are a three MWD specific types referenced. These are:

• MWDColor – a 24 bit color in a 3 byte structure, fields are red, green, and blue.
There are eight predefined color constants you can use:

o coBlack
o coRed
o coGreen
o coBlue
o coYellow
o coCyan
o coPurple
o coWhite

• MWDAlignment – an enumerated type, defines which part of the text aligns with
the specified line number:

o caTop
o caMiddle
o caBottom

• MWDStatus – an enumerated type, defines error codes returned by the MWD
client:

o msSUCCESS Everything OK
o msCONNECT_ERROR Error Connecting or Not Connected
o msPASSWORD_ERROR Invalid connection password
o msSOCKET_ERROR Socket I/O Error
o msINIT_ERROR, Error Initializing MWD
o msCAPTIONLENGTH_ERROR Caption text empty or too long
o msGAPSIZE_ERROR Gap size <= 0

4.3.2.2.5 FSD
Each instance of this class implements a client to a PC-based Frame Synchronizer
Display (FSD). The FSD object takes care of all the behind the scenes socket
communications with the FSD application on the PC.

The typical sequence of events for a FSD video session is as follows:

9/10/09 - 142 - DCS 104.4

// Create an FSD object
FSD* fsd = new FSD();
// Connect it to the right display
fsd->connect(“somehost.somewhere”,someport);

// Loop outputs fsd updates
while (!done)
{
 FSDInfo fsd_info;
 // fill in info fields
 fsd_info.status = ...
 etc.
 // output update to FSD
 fsd->update(fsd_info);
}
// disconnect from the FSD, and delete object
fsd->disconnect();
delete fsd;

A description of the public methods of the FSD class is presented in the following table:
Method Description
FSD() Construct the FSD object, is initially not connected
MWDStatus connect(
const string &host, int port)

Connect to the FSD, must precede call to update. The
host argument is a string, in either the “host.domain”
format or in the “n.n.n.n” numeric IP address format.
The port is the port number the FSD has been
configured to listen on.

FSDStatus update(FSDInfo
fsd_info)

Update the FSD with a new block of information

FSDStatus disconnect(void) Disconnect from the FSD
~FSD(void) Destructor, first disconnects if not disconnected, then

cleans up

The FSDInfo block contains all of the information needed to update the display. The
fields of this block are defined in FSD.hpp.

4.3.2.2.6 Ingest
The Ingest class is an abstract class that acquires blocks of raw data from a source and
writes these blocks to a FIFO. Each actual ingest class (see the following subsections)
must override these four methods:
// public abstract methods defined by Ingest
virtual bool prepare(void) = 0;
virtual bool go(void) = 0;
virtual bool isStopped(void) const = 0;
virtual bool stop(void) = 0;

The prepare method of any Ingest class generally creates a thread that will copy data
from a source to the FIFO. This thread typically opens the data source, then waits on a

9/10/09 - 143 - DCS 104.4

go flag. The go method of any Ingest class typically sets the go flag to allow the thread
to start reading. The isStopped method checks for an indication that the copying
operation has stopped. The stop method closes the data source and cleans up.

Each of the specific Ingest class descendents will also implement a static initialize
method that reads the initialization file to determine the number of Ingest objects to
create and the attributes of these objects. In most cases, the initialization file will
contain a section like XXXIngest that looks something like this:

=XXXIngest
XXXIngestCount = N;

=XXXIngest1
parameters for first ingest system
Key1 = Value1
Key2 = Value2
Etc.

=XXXIngest2
parameters for second ingest system
Key1 = Value1
Key2 = Value2
Etc.

Note that this exact syntax is not enforced, just suggested. The initialize method will
read the per object parameters from the initialization file, then call a constructor with
these parameters to create each object, then insert the object into the Modules class.

4.3.2.2.6.1 RDCIngest
The RDCIngest class reads blocks of data from the RDC shared memory ring buffer
and writes these blocks to a FIFO.

The static initialize method will read how many objects to be created from the
initialization file. For L7 ingests, two objects will be constructed. For L5 ingests, one
object. For each object, the initialization file will contain the name of the RDC ring
buffer to use. The parameter will be loaded into a member of the RDCIngest object for
use in attaching to the ring buffer.

The prepare method will create a run flag that is set, clear a stop request Boolean, then
create and start a new thread object. It will then wait for the run flag to be reset before
returning.

The run method of the thread object will attach to the RDC ring buffer and attach to the
FIFO for the same string. In other words, for L7, the first RDCIngest will always attach
to the first FIFO and the second to the second. After the attaches complete, the
method will do a resetAndWait on the run flag. This will indicate that initialization has
completed and allow the prepare method to exit.

9/10/09 - 144 - DCS 104.4

The go method will set the run flag allowing the thread to start copying blocks of data
from the ring buffer to the FIFO.

The thread’s run method will then loop, reading blocks from the ring buffer and writing
the blocks to an output FIFO. When copying, any time the ring buffer is empty, the
read call to the ring buffer block until data is available. Anytime the FIFO is full, a write
call to the FIFO will block until the FIFO has room for more data. The run method will
continue looping until either the ring buffer read method returns an end of stream
indication or a stop request boolean is true. When either condition is encountered the
thread will detach the RDC ring buffer, detach the FIFO, clear the run flag indicating
completion, and then exit.

The isStopped method will read the state of the run flag and return its logical
complement.

The Stop method will set the stop request boolean, then wait for the run flag to clear.

4.3.2.2.7 Frame Sync
The FrameSync class is an abstract class that acquires blocks of raw data from a FIFO,
extracts frames of data from these blocks, and writes these frames to another FIFO.
Each actual FrameSync class (see the following subsections) must override these four
methods:
// public abstract methods defined by Ingest
virtual bool prepare(void) = 0;
virtual bool go(void) = 0;
virtual bool isStopped(void) const = 0;
virtual bool stop(void) = 0;

The prepare method of any FrameSync class generally creates one or more threads
that do the processing. One of these threads typically attaches to the source FIFO,
then waits on a go flag. If there are additional threads they are synchronized to this first
thread. The last thread attaches to the destination FIFO. The go method of any
FrameSync class typically sets the go flag to allow the threads to start reading and
processing. The isStopped method checks for an indication that the processing
operation has stopped. The stop method closes the data source and cleans up.

Each of the specific FrameSync class descendents will also implement a static initialize
method that reads the initialization file to determine the number of FrameSync objects
to create and the attributes of these objects. In most cases, the initialization file will
contain a section like XXXFrameSync that looks something like this:

9/10/09 - 145 - DCS 104.4

=XXXFrameSync
XXXFrameSyncCount = N;

=XXXFrameSync1
parameters for first FrameSync system
Key1 = Value1
Key2 = Value2
Etc.

=XXXFrameSync2
parameters for second FrameSync system
Key1 = Value1
Key2 = Value2
Etc.

Note that this exact syntax is not enforced, just suggested. The initialize method will
read the per object parameters from the initialization file, then call a constructor with
these parameters to create each object, then insert the object into the Modules class.

4.3.2.2.7.1 Landsat 7 Frame Sync
The Landsat 7 frame synchronizer is a CCSDS frame synchronizer. The L7 major
frame (scan lines) are constructed by classes of the L7 Formatter. The raw incoming
data stream is acquired from the input FIFO class object. Annotated CCSDS frames
are output to the output FIFO class object.

The L7 Frame Sync is implemented as a FrameSync, Thread classes and is declared
as:

Class CCSDSFramer : public FrameSync, private Thread

The L7 Frame sync consists of the following main public methods, which will be found
in the source files CCSDSFramer.cpp & CCSDSFramer.hpp.

9/10/09 - 146 - DCS 104.4

Public:
static void Initialize(InitFile *inifile);

virtual SyncStatus getStatus(void) ;
virtual void getGroup1Name(string &) ;
virtual void getGroup2Name(string &) ;
virtual void getGroup1Labels(string &, string &, string &,
string &) ;
virtual void getGroup2Labels(string &, string &, string &,
string &) ;

virtual SyncStatus group1Status(long long int totals[5]) ;
virtual SyncStatus group2Status(long long int totals[5]) ;

virtual bool isStopped(void) ;

virtual bool prepare(void) ;
virtual bool go(void) ;
virtual bool stop(void) ;
virtual void abort(void) ;

Private:

int get(aCCSDSFrame *frame) ;
void maketable(void) ;
virtual int run(void) ;

The CCSDSFramer constructor method is responsible for initialization of the member
variables from the initialization file. The key initialization data member variables are the
input FIFO, the minimum format change quality, and the maximum bit errors allowed in
the CCSDS sync pattern. The CCSDSFramer Initalize method is a static method that is
responsible for reading the initialization file to determine if the CCSDS synchronization
is selected, and if so, it instantiates two CCSDSFramer objects and calls
addFrameSync which is a Modules class static method, to add itself to the MWD
system. The CCSDSFramer prepare method attaches to the input raw FIFO and
starts the thread that will process create the output frames. The CCSDSFramer go
method clears the runflag, which allows the processing on the thread to begin. The
isStopped method checks for an indication that the copying operation has stopped.
The stop method closes the data source and cleans up.

The getStatus method returns the primary status of the frame synchronizer; “Idle”,
“Active”, “Wait”, “Lock” and “Search”.
The methods getGroup1Name, getGroup2Name, getGroup1Labels, and
getGroup2Labels return fixed strings that represent the names of the returned status
values.

9/10/09 - 147 - DCS 104.4

The methods group1Status and group2Status return arrays of status values. The
CCSDS status values haven’t been determined, but normally include total frames,
frames with bit errors in the sync pattern, detected bit slips, among others.

The run method is inherited from the Thread class and is used as the main routine of
the CCSDSFramer. First it performs some initialization such as allocating memory
buffers, creating the search table, and then waits for the run flag to be set using the
Flag::waitForSignal() method which is described in the Flag section below. While the
runflag continues to be set, the main loop creates the CCSDS frames.

The CCSDSFramer determines the ETM+ format of each decoded CCSDS frame,
which is the only Landsat 7 specific logic in the CCSDSFramer class. Contained within
the VCDU header is the ETM+ data format field, this format field is protected by an
ECC. Since bit errors in telemetry is much more likely then a format change only a
format and ECC field that has less then or equal number bit errors than an initialization
set maximum (most likely zero) can cause the CCSDSFramer to change ETM+ formats.
The annotated frame is then sent to the frame FIFO for the determined ETM+ format.

The run method will look like this:
Maketable ;
runflag.waitForSignal ;
current_format = 0 ;
format_changing = 0 ;
while (runflag.isSignaled && get(ccsds_frame))
{
 format = find_format(ccsds_frame, format_quality) ;
 if (format != current_format &&
 format_quality <= Min_change_quality)
 format_changing++ ;
 else
 format_changing = 0 ;
 if(format_changing > Change_threshold)
 {
 current_format = format ;
 format_changing = 0 ;
 }
 if(current_format != 0)
 framefifo[current_format-1].write(ccsds_frame) ;
}

The CCSDS SearchTable is populated with the shift value for each bit position of the
sync with one bit error in every position.

9/10/09 - 148 - DCS 104.4

unsigned short mask, bits ;
for (int shift=0; shift<=16; shift++)
{
 unsigned long long pattern = ccsds_sync ;
 pattern <<=shift ; //sync pattern
shifted by "shift" bits
 bits = (unsigned short) (pattern >>=48) ; //top 16 bits
moved to bottom 16 bits
 SearchTable[bits] = shift + 1 ;
 if(max_bad_bits > 0)
 {
 for(j=0; j<16; j++)
 {
 mask = 1 << j ;
 if(SearchTable[(unsigned short)(bits^mask)] == 0)
 SearchTable[(unsigned short)(bits^mask)] = shift +
1 ;
 }
 }
}

The private get method of the CCSDSFramer is where the bulk of the software frame
synchronizer resides. The software frame sync key searching line of code from the get
method looks like this:

while((search_ptr < stop_search) &&
(SearchTable[*search_ptr]==0)) search_ptr++ ;

Explanation: While the pointer into the search buffer is not too close to the end of the
searching buffer and the 16bit word at the pointer is not a part of the CCSDS sync then
increment the search pointer and try again. Only exiting from the one line loop when we
need more raw data or a candidate sync pattern has been found. This simple approach
allows the frame sync to fly though noise or other non-frame data with little CPU usage.

When more data is required, the unused data at the tail of the search buffer is copied to
the head of the search buffer and new data is read in from the raw FIFO. The search
pointer is set to the head of the buffer and the stop pointer is reset to the end of data in
the buffer minus one frames length, which prevents a running out of buffer problem.

When a candidate sync pattern has been found, the shift value is extracted from the
SearchTable, and converted from a 16bit-word offset to a 64bit-word offset. The area
containing the full candidate sync pattern is shifted and XOR’ed with the known pattern.
If the number of bits in error is less than or equal to the maximum allowed then the sync
has been found else the search pointer is incremented and control is passed to the
main searching “while”.

9/10/09 - 149 - DCS 104.4

The rest of the frame is shifted into alignment in the output frame buffer.

for (i=0; i<frame_size; i++)
{
 buffer[i] = *(pointer-1+i) << (64 – shift) ;
 buffer[i] |= *(pointer+i) >> shift ;
}

The Pseudo Noise (PN) pattern that was applied to the frames before transmission is
simply removed by XOR’ing with a stored copy of the PN pattern:

for (i=0; i<frame_size; i++)
 buffer[i] ^= pn[i] ;

4.3.2.2.7.2 Landsat 4/5 TM Frame Sync
The Landsat 4/5 TM frame synchronizer constructs TM major frames (scan lines) from
the raw incoming data stream. Incoming raw data is acquired from the input serial FIFO
class object. Annotated major frames are output to the output frame FIFO class object.

Initialization parameters

The initialization parameters, retrieved via the initFile class, for the L45Framer are the
following:

Search_Buffer_Size - The size in bytes of the allocated internal searching buffer. The
value must be no smaller than the greater of two times the raw FIFO block sizes or two
times the major frame size - e.g. TMR's major frame size is about 800 KB therefore the
search_buffer_size can't be smaller then 1.6 MB. When zero, the default, the software
will automatically set the buffer size to the smallest valid value, which is recommended.
Note that although the searching buffer can be made very large, it should not be used
for real-time data buffering. Must be an even value, or bus errors will occur.

9/10/09 - 150 - DCS 104.4

MJF_Word_Match - Number of perfect 16bit words that must match in the major frame
synchronization pattern during the searching phase. The default is three.

MJF_Word_Increment - How many 16bit words the software moves down the data
stream on each check for a perfect 16bit word within the major frame synchronization
pattern. The default is four.

MJF_Searching_Errors - The number of bit errors allowed in the 816 bit Major frame
synchronization pattern. The default is 50.

MJF_Lock_Word_Match - During the Lock phase, the number of perfect 16bit words
that must match in the next major frame synchronization pattern. The default is five.

MJF_Lock_Word_Increment – The number of 16bit words the software moves down
the data stream on each check for the next major frame synchronization pattern. The
default is one.

Beforestart_Timeout - The number of bytes of data to pass through the frame sync
before the first frame is found before auto shutdown. A value of zero (0) disables this
feature.

Afterstart_Timeout - The number of bytes of data to pass through the frame sync after
the first frame is found before auto shutdown. A value of zero (0) disables this feature.

MNF_Flywheeling_Errors - The number of bits in error in the minor frame
synchronization pattern before we start looking for bit slips. Minor frames with bit error
values larger than this are considered to be flywheeled. The default is three.

Slip_Window_Back and Slip_Window_Ahead – The number of 16bit words to look back
and ahead in the data stream window when looking for minor frame bit slips. The
defaults are one.

Slip_Found - After a slip has been detected, this value is the number of bit errors that
are allowed in newly located minor frame synchronization pattern before we perform a
reshift of the data. The default is two.

Max_Slips - The maximum number of re-shifts of discovered bit slips that will be
corrected in a single major frame. The default is five.

MNF_Lock_Loss_Trigger - Number of flywheeled minor frames in a row for which the
minor frame synchronization pattern could not be found before a minor frame lock loss
is declared.

Bit_File_Location – FOR TESTINGONLY - Saves a copy of the input bit stream to the
specified directory with a file name of the date-time and a file type of ".bits"

9/10/09 - 151 - DCS 104.4

Class Methods

The L4/5 TM Frame Sync is implemented as a FrameSync, Thread classes and is
declared as:

Class L45Framer : public FrameSync, private Thread

The L4/5 Frame sync consists of the following main public methods, which will be found
in the source files L45Framer.cpp & L45Framer.hpp.

Public:
static void initialize(InitFile *inifile);
static void writeVersion(ostream &vout) ;
virtual SyncStatus getStatus(void) ;
virtual void getGroup1Name(string &) ;
virtual void getGroup2Name(string &) ;
virtual void getGroup1Labels(string &, string &, string &,
string &) ;
virtual void getGroup2Labels(string &, string &, string &,
string &) ;

virtual SyncStatus group1Status(long long int totals[5]) ;
virtual SyncStatus group2Status(long long int totals[5]) ;

virtual bool isStopped(void) ;

virtual bool prepare(void) ;
virtual bool go(void) ;
virtual bool stop(void) ;

Private:

L45Framer(InitFile *inifile, int sync_unit) ;
int open(const char* bitfile) ;
int close(void) ;
int get(aCCSDSFrame *frame) ;
void maketable(const char* bitfile) ;
virtual int run(void) ;
int get(unsigned char* out_frame, unsigned long long
&grandtotalbit,
 unsigned long long &sync2sync, int &total_bad_bits,
 int &mnf_in_mjf, int &num_good_mnfs, int &num_bad_mnfs,
 int &num_slips, int &num_flywheeled) ;
void statistics(TMRStatistics* tmrstats) ;
int startFraming(void) ;
int stopFraming(void) ;

9/10/09 - 152 - DCS 104.4

The L45Framer Initalize method is a static method that is responsible for reading the
initialization file to determine if Landsat 4/5 TM synchronization is selected, and if so, it
instantiate a L45Framer object and calls addFrameSync which is a Modules class static
method, to add itself to the MWD system. The L45Framer constructor method is
responsible for initialization of the member variables from the initialization file. All
initialization data member variables have adequate default values. The L45Framer
prepare method attaches to the input and output FIFOs and calls the private open
method that creates the search tables and starts the thread that will process the output
frames. The L45Framer go method calls the private startFraming method, which allows
the processing on the thread to begin. The isStopped method checks for an indication
that the copying operation has stopped. The stop method closes the data source and
cleans up.

The getStatus method returns the primary status of the frame synchronizer; “Idle”,
“Active”, “Wait”, “Lock” and “Search”. Where Idle and Active indicate the system hasn't
started. The Wait state indicates that the software is waiting on more input data. The
Search state indicates that the data is being processed but no frames are being found
at the moment. The Lock state indicates that TM scan lines are being found and
output.

The methods getGroup1Name, and getGroup2Name return fixed strings that are the
names of the status groups. The Group 1 and 2 names are, respectively: "Major Frame
Synchronizer", "Minor Frame Synchronizer". The methods getGroup1Labels, and
getGroup2Labels return fixed strings that represent the names of the status values that
are returned by the methods group1Status and group2Status . The group1Status and
group2Status return five values where the zeroth element is the total for the group, total
major/minor frames and the other four are in the categories represented by the label
names. These values are total values that increment continuously during the pass.

The getGroup1Labels and corresponding values:
 "Good" - Number of major frames with zero bit errors in the 816 bit major frame

synchronization pattern.
 "Bit Errors" – Number of major frames with at least one bit in error in the 816 bit major

frame synchronization pattern, but less bits in error than the maximum tolerance
value which is set by the initialization file field of "MJF_Searching_Errors", which
defaults to 50 when not provided.

 "MNF Losses" – Number of times minor frame lock was lost within the major frames.
A minor frame lock loss is declared when the number of consecutive flywheeled
minor frames exceeds the threshold set by the initialization file field of
"MNF_Lock_Loss_Trigger", which defaults to 20 when not provided.

 "MJF Losses" – Number of major frame lock losses. A major frame lock loss is
declared when subsequent major frame synchronization patterns are farther down
the telemetry stream then expected.

The getGroup2Labels and corresponding values:

9/10/09 - 153 - DCS 104.4

 "Good" – Number of minor frames with zero bit errors in the 32 bit synchronization
pattern.

 "Bit Errors" – Number of minor frames with at least one bit in error in the 32 bit
synchronization pattern.

 "Bit Slips" – Number of bit slips that have been detected.
 "Flywheeled" – Number of minor frames that have bit errors beyond the accepted

tolerance. Frames are only counted as flywheeled when followed within the same
major frame by acceptable minor frames, otherwise they would be indistinguishable
from noise data.

The run method is inherited from the Thread class and is used as the primary
processing routine of the L45Framer. First it performs some initialization such as
attaching to the FIFOs, and then waits for the run flag to be set using the
Flag::waitForSignal() method which is described in the Flag section. While the runflag
continues to be set, the main loop creates the TM major frames, by calling the private
get method repeatedly.

The private maketable method creates the searching tables. The major frame searching
table, SearchTable is populated with the shift value for each bit position of the
synchronization pattern. Valid shifts range from zero bit shift to 801 bit shift inclusive.
The minor frame searching table, MnfSearchTable, has valid shifts ranging from zero
bit shift to 16, and filled with two bit errors for each value. The tables are filled with
shifts plus one to reserve zero in the table as a no match, this speeds processing on
SGIs the test for zero is very fast. Allowing the frame synchronization process to go
through noise easily.

The private get method of the L45Framer is where the bulk of the software frame
synchronizer resides. The software frame sync key searching line of code from the get
method looks like this:

while((search_ptr < stop_search) &&
 (SearchTable[*search_ptr]==0 ||
SearchTable[*search_ptr]>min_val)) search_ptr+= N_increment
;

Explanation: While the pointer into the search buffer is not too close to the end of the
searching buffer and the 16bit word at the pointer is not a part of the TM major frame
synchronization pattern then increment the search pointer by the value supplied by the
initialization parameter MJF_Word_Increment and try again. A second check is made to
confirm that the the indicated shift value is not too large, meaning the test for more
matches is guaranteed to fail. Only exiting from the one line loop when we need more
raw data or a candidate sync pattern has been found. This simple approach allows the
frame sync to fly though noise or other non-frame data with little CPU usage.

9/10/09 - 154 - DCS 104.4

When more data is required, the unused data at the tail of the search buffer is copied to
the head of the search buffer and new data is read in from the raw FIFO. The search
pointer is set to the head of the buffer and the stop pointer is reset to the end of data in
the buffer minus one frames length, which prevents a running out of buffer problem.

When a candidate sync pattern has been found, one match out of "N" has been found
in our major frame sync search. Where "N" is the value of the initialization parameter
MJF_Word_Match. Checks are then made to see if N-1 more matches can be found
within the potential sync area. If these next checks confirm a major frame
synchronization pattern has been found a full bit-wise XOR'ed check is made to
determine the number of bits in error when compared to the expected pattern. When
the bits in error value is less than the value for the initialization parameter
MJF_Searching_Errors, then a major frame has been found.

All of the above checks are than made again at the expected location of the next major
frame synchronization pattern, at which point the general frame sync status is set to
"Lock". The exact location of the second major frame synchronization pattern
determines the length of the major frame. When the next major frame can not be found
the major frame length is set to the maximum value.

The entire major frame is shifted into alignment in the output frame buffer.

for (i=0; i<frame_size; i++)
{
 buffer[i] = *(pointer-1+i) << (64 – shift) ;
 buffer[i] |= *(pointer+i) >> shift ;
}

Each of the minor frames within the major frame are then checked for the correct minor
frame synchronization pattern. The minor frame synchronization patterns will now be in
memory on word boundaries, making these checks a simple XOR without any shifting.

When minor frames are found with bit errors greater than the initialization parameter of
MNF_Flywheeling_Errors, the minor frame is flywheeled. When the number of
flywheeled minor frames in-a-row exceeds the value of the initialization parameter of
MNF_Lock_Loss_Trigger then the minor frame lock loss statistics value is incremented.

When the size of the major frame is unknown due to not being able to find the next
major frame synchronization pattern and the minor frame lock loss has been triggered,
then the length of the major frame is reset to the point where the flywheeling started.

When three or more minor frames in-a-row are found to be flywheeled then a check is
made to confirm if a bit slip has occurred. The minor frame search buffer is used on the
adjacent words to locate the minor frame synchronization pattern. If found in a bit
slipped location the rest of the major frame from that point onward is then re-shifted.

9/10/09 - 155 - DCS 104.4

Since this re-shifting is very time consuming a limit is put on the number of times a
single major frame can be re-shifted, defined by the initialization parameter Max_Slips.

The Pseudo Noise (PN) pattern that was applied to the frames before transmission is
then simply removed by XOR’ing with a stored copy of the PN pattern:

for (i=0; i<frame_size; i++)
 buffer[i] ^= pn[i] ;

4.3.2.2.8 Formatter
The Formatter class is an abstract class that acquires frames of data from a source
FIFO, extracts and formats data for an MWD from these frames, and sends this
information to the MWD. Each actual Formatter class (see the following subsections)
must override these four methods:
// public abstract methods defined by Ingest
virtual bool prepare(void) = 0;
virtual bool go(void) = 0;
virtual bool isStopped(void) const = 0;
virtual bool stop(void) = 0;

The prepare method of any Formatter class generally creates one or more threads that
do the processing. One of these threads typically open the source FIFO, then waits on
a go flag. If there are additional threads they are synchronized to this first thread. The
last thread will send the output to an MWD (using an MWD object). The go method of
any Formatter class typically sets the go flag to allow the threads to start reading and
processing. The isStopped method checks for an indication that the processing
operation has stopped. The stop method closes the data source and cleans up.

Each of the specific Formatter class descendents will also implement a static initialize
method that reads the initialization file to determine the number of Formatter objects to
create and the attributes of these objects. In most cases, the initialization file will
contain a section like XXXFormatter that looks something like this:

9/10/09 - 156 - DCS 104.4

=XXXFormatter
XXXFormatterCount = N;

=XXXFormatter1
parameters for first Formatter system
Key1 = Value1
Key2 = Value2
Etc.

=XXXFormatter2
parameters for second Formatter system
Key1 = Value1
Key2 = Value2
Etc.

Note that this exact syntax is not enforced, just suggested. The initialize method will
read the per object parameters from the initialization file, then call a constructor with
these parameters to create each object, then insert the object into the Modules class.

4.3.2.2.8.1 L7 Formatter
The L7 Formatter takes the input frames from the CCSDS frame sync via a frame FIFO
and extracts the timecode and subsampled video lines and sends them to the MWD. It
also determines interval starts, which are displayed on the MWD as well as dropped
lines which show up on the MWD as blank lines.

The L7 Formatter is implemented as a Formatter, Thread class and is declared as:

Class FormatterL7 : public Formatter, private Thread

The L7 Formatter consists of the following main methods, which are found in the source
files FormatterL7.cpp & FormatterL7.hpp.

9/10/09 - 157 - DCS 104.4

Public:

static void Initialize(InitFile *inifile); // constructs
object & plugs in modules

virtual bool prepare(void); // overrides base class
Formatter

virtual bool go(void); // overrides base class
Formatter

virtual bool isStopped(void) const; // overrides base class
Formatter

virtual bool stop(void); // overrides base class
Formatter

Private:

FormatterL7(InitFile*); // constructor

virtual int run(void); // overrides base class
Thread

void startInterval(scanTime *time);

void endInterval(scanTime *time, int lines,
 int sublines, int frames) ;

void writeFrame(scanTime *time, double actual_time, int
&line_num,
 int &sub_num, int lines, int sublines, int
frames) ;

The FormatterL7 constructor method is responsible for initialization of the member
variables from the initialization file. The key initialization data member variables are the
MWD subsampling factors (x,y), and the detector/band offsets for the L7 ETM+ video
lines. The FormatterL7 Initalize method is a static method that is responsible for
reading the initialization file to determine if the L7 formatter is selected, and if so, it
instantiates two FormatterL7 objects and for each calls addFormatter which is a
Modules class static method, to add itself to the MWD Formatter system. The
FormatterL7 prepare method attaches to the frame FIFO from the CCSDS frame sync
and starts the thread that will process the L7 frames. The FormatterL7 go method
clears the runflag, which allows the processing on the FormatterL7 thread to begin.

9/10/09 - 158 - DCS 104.4

The isStopped method checks for an indication that the copying operation has stopped.
The stop method closes the data source and cleans up.

The run method is inherited from the Thread class and is used as the main routine of
the L7 Formatter. First it performs some initialization such as allocating some memory
buffers and then waits for the run flag to be set using the Flag::waitForSignal() method
which is described in the Flag section below. While the runflag continues to be set, the
main loop calls the get method of the L7MajorFrame object to retrieve an annotated L7
scan line If the timecode is reliable, as determined by the timecode quality value, it can
be used to compute the number of dropped major frames (if any). If dropped major
frames are encountered that are less than the threshold value, this number is used to
increment the interval line counter by the number of dropped frames. Incrementing the
interval line count will allow the dropouts to appear on the MWD as filled lines. If the
number of dropped frames was greater than the threshold or negative, a new interval is
encountered. When a new interval is encountred, the methods endInterval and
startInterval are called. Finally the writeFrame method is called to perform the L7
ETM+ decomutation, subsampling and to write the video to the MWD.

PDL for the FormatterL7::run(void) method

Initalize, allocate memory buffers

Construct L7MajorFrame object

RunFlag.waitForSignal() Wait for the runflag

While (runflag is signaled)

 Get L7 major frame, break on EOD
 Compute number_of_fill_frames
 If (number_of_fill_frames < 0 or number_fill_frames >
threshold) then
 endInterval()
 startInterval()
 else if (number_of_fill_frames > 0)then
 increment interval line number (to display gap on MWD)
 endif
 writeFrame() to output subsampled video to MWD
end While

The startInterval method initializes the MWD by calling the mwd class gap, init, and
intervalStart methods. It also displays the interval start timecode using the mwd class
caption method. The endInterval method displays the interval stop timecode using the
mwd class caption method.

9/10/09 - 159 - DCS 104.4

The writeFrame method performs the L7 ETM+ frame decomutation, which extracts the
raw image lines from a L7 ETM+ major frame. The ETM+ major frame is directly
decomutated into subsampmled image lines for the MWD. The MWD class caption
method to display the timecode for every Nth image line where N is some
programmable number such as 100 such that the spacing is sufficient so that the
captions do not overwrite one another. Next the decomutation, subsampling and MWD
output is performed as is described in the following PDL. To make the MWD output of
all bands the same size, the subsampling rate varies with band size. The subsampling
rate is based on the standard reflective bands, for band 6 is half of the standard, and
the subsampling rate for band 8 (PAN) is double that of standard.

PDL for the ETM+ decomutation in the FormatterL7::writeFrame method

Loop through all bands
 Loop through all detectors for each band
 If (current line/detector has been selected based on y-direction subsampling)then
 If (initfile bumpermode flag set)then
 Compute bumper mode offsets into the major frame for the current band/detector
 else
 Compute normal mode offsets into the major frame for the current band/detector
 endif
 If (scan_direction is forward)
 Loop through the Major frame extracting subsamped image data for the
 detector/band into a buffer in the forward direction (x-subsampled)
 else
 Loop through the Major frame extracting subsamped image data for the
 detector/band into a buffer in the reverse direction (x-subsampled)
 endif
 use the MWD class VIDEO method to write current band image data to MWD
 endif
 end detector loop
 end band loop

every N lines use MWD::Caption to display timecode on the MWD

L7 major frames areThe Landsat 7 major frame class, L7MajorFrame, builds and
annotates L7 major frames (ETM+ scans). CCSDS frames are acquired as input from
the frame FIFO. The L7MajorFrame class consists of the following methods.

9/10/09 - 160 - DCS 104.4

L7MajorFrame(int format) ; // constructor

int get(aL7MajorFrame *mjf) ; // returns non-zero for
EOD

void get_time(aL7MajorFrame *mjf) ; // annotates the
timecode fields

void find_EOL(aL7MajorFrame *mjf) ; // annotates end of line
field

~L7MajorFrame(void) ; // destructor

The constructor allocates the correct input frame FIFO for the assigned format.

Each CCSDS frame is examined for its relationship to the L7 scan line start (SLS),
CCSDS frames before the first SLS are discarded. Each CCSDS frame contains the
minor frame counter and byte pointer within that minor frame. The next pointer and
previous pointer are calculatable from the value of the current pointer in a highly
defined manner. Each pair of CCSDS frames is examined for the case where the minor
frame counter resets and/or the byte pointer value is not as expected, the SLS may be
nearby. The expected beginning of the SLS is calculated from the minor frame counter
and byte pointer. The SLS is a minor frame containing 40 bytes of all bits set followed
by 40 bytes of all bits clear. The SLS may be wholly contained in either of the two
CCSDS frames, or even span the CCSDS frame boundary. The “extra zero” problem,
noted in the L7 DFCB Vol. 4 section 3.2.6.2.3.2.4, is detected when the SLS is located
starting one byte earlier then expected.

The L7 scan line is built by loading each successive CCSDS frame’s minor frame data
into the major frame. The loading continues until the next SLS is encountered or the
maximum number of minor frames in a major frame is reached. When CCSDS frames
have been lost, fill minor frames are loaded into the scan line, based on the channel
counter and pointer fields. Because the loading usually stops when the next SLS is
encountered, subsequent calls to the “get” routine find the SLS immediately.

The scan direction, multiplexer identifier and the gain settings for each imagery band
are present as a single bit in each CCSDS frame. The bytes containing these bit fields
are saved from, an initialization set number of consecutive CCSDS frames. Each of
these bits is then majority voted determining their values with a high degree of reliability.

The utility routine “get_time” is called to populate the annotated L7 scan line with the
timecode of the scan and the bit error quality of the timecode. The timecode of the scan
line is extracted from minor frames 2 through 5, into both a string version of the time
and a double floating value stored in the annotated major frame structure. The
timecode fields in the minor frame are 40 bit fields, all set or all clear. Each 40 bit field
represents a single bit of a digit of the timecode. Each of the digits is 2 to 4 bits in size.

9/10/09 - 161 - DCS 104.4

The total number of bits not in consensus is saved for determining the timecodes
reliability.

The utility routine “find_EOL” returns the number of minor frames until the end of line
code. The end of line pattern is 40 bits clear followed by 40 bits set repeating for 2
minor frames, exclusive of the 5 bytes and the end of each minor frame representing
the band 6 areas. Each minor frame within, an initialization set, window is checked for
the end of line pattern. When the number of bits different from what is expected is less
than, an initialization set, number the end of line has been found.

void find_EOL(aL7MajorFrame* mjf)
{
 int value ;
 int cur_mnf = Min_EOL_mnf ;
 mjf->counted_mnf = 0 ;
 while(cur_mnf < Max_EOL_mnf && !mjf->counted_mnf) {
 cur_mnf++ ;
 value = bits_on(mjf->major_frame+(cur_mnf*L7mnfSize), 20)
 + bits_off(mjf->major_frame+(cur_mnf*L7mnfSize)+20, 20)
 + bits_on(mjf->major_frame+(cur_mnf*L7mnfSize)+40, 20)
 + bits_off(mjf->major_frame+(cur_mnf*L7mnfSize)+60, 20) ;
 if(value < 40) {
 mjf->counted_mnf = cur_mnf ;
 total = value ;
 }
 }
 if(mjf->counted_mnf) {
 value = bits_on(mjf->major_frame+(cur_mnf*L7mnfSize), 20)
 + bits_off(mjf->major_frame+(cur_mnf*L7mnfSize)+20, 20)
 + bits_on(mjf->major_frame+(cur_mnf*L7mnfSize)+40, 20)
 + bits_off(mjf->major_frame+(cur_mnf*L7mnfSize)+60, 20) ;
 total += value ;
 mjf->eol_flag = 0 ;
 } else {
 cerr << "End-of-Scan code not found." << endl ;
 mjf->eol_flag = 1 ;
 mjf->counted_mnf = (Max_EOL_mnf-Min_EOL_mnf)/2 + Min_EOL_mnf ;
 total = 0 ;
 }
 mjf->counted_mnf_errors = total ;
 return ;
}

The base utility routines bits_on and bits_off return the number of bits set or clear
starting at the givin pointer for the givin number of bytes. The “value” in each of the
statements above would be zero in perfect data.

4.3.2.2.8.2 L5 Formatter
The L5 Formatter takes the input frames from the L5 frame sync via a FIFO and
extracts the timecode and subsampled video lines and sends them to the MWD. It also
determines interval starts, which are displayed on the MWD as well as dropped lines
which show up on the MWD as blank lines.

9/10/09 - 162 - DCS 104.4

The L5 Formatter is implemented as a Formatter Thread class and is declared as:

Class FormatterL5 : public Formatter, private Thread

The L5 Formatter consists of the following main methods, which are found in the source
files FormatterL5.cpp & FormatterL5.hpp.

FormatterL5(InitFile*); // constructor

void FormatterL5::Initialize(InitFile *inifile); // construcs obj & plugs itself in

virtual bool FormatterL5::prepare(void); // overrides base class Formatter

virtual bool FormatterL5::go(void); // overrides base class Formatter

virtual bool FormatterL5::isStopped(void) const; // overrides base class Formatter

virtual bool FormatterL5::stop(void); // overrides base class Formatter

virtual int FormatterL5::run(void); // overrides base class Thread

void startInterval(scanTime *time, Interval* &ival);

void endInterval(scanTime *time, Interval* &ival,
 int lines, int sublines, int frames) ;

void writeFrame(scanTime *time, double actual_time, int &line_num,
 int &sub_num, int lines, int sublines, int frames) ;

The FormatterL5 constructor method is responsible for initialization of the member
variables from the initialization file. The key initialization data member variables are the
MWD subsampling factors (x,y), the bumper mode flag and the detector/band offsets
for the L5 TMR video lines. The FormatterL5 Initalize method is a static method that is
responsible for reading the initialization file to determine if the L5 formatter is selected,
and if so, it instantiates a FormatterL5 object and calls addFormatter which is a
Modules class static method, to add itself to the MWD Formatter system. The
FormatterL5 prepare method attaches to the FIFO from the L5 framesync and starts the
thread that will process the L5 frames. The FormatterL5 go method clears the runflag,
which allows the processing on the FormatterL5 thread to begin. The isStopped
method checks for an indication that the copying operation has stopped. The stop
method closes the data source and cleans up.

The run method is inherited from the Thread class and is used as the main routine of
the L5 Formatter. First it performs some initialization such as allocating some memory
buffers and then waits for the run flag to be set using the Flag::waitForSignal() method
which is described in the Flag section below. While the runflag continues to be set, the
main loop reads a block of data (a L5 TMR major frame) from the FIFO. For each
frame the L5 timecode is computed using the scanTime class method compute. Next it
calls the getVoteErrors method to determine the worst case number of time code voting
errors from all of the components that make up the timecode. This worst case voting

9/10/09 - 163 - DCS 104.4

values is used to determine if the timecode is reliable. If the timecode is reliable, it can
be used to compute the number of dropped major frames (if any). If dropped major
frames are encountered that are less than the threshold value, this number is used to
increment the interval line counter by the number of dropped frames. Incrementing the
interval line count will allow the dropouts to appear on the MWD as filled lines. If the
number of dropped frames was greater than the threshold or negative, a new interval is
encountered. When a new interval is encountred, the methods endInterval and
startInterval are called. Finally the writeFrame method is called to perform the L5 TMR
decomutation, subsampling and to write the video to the MWD.

PDL for the FormatterL5::run(void) method

Initalize, allocate memory buffers

RunFlag.waitForSignal() Wait for the runflag

While (runflag is signaled)

 Read a major frame from the FIFO
 Compute the timecode
 Get the max_voting_errors
 Compute number_of_fill_frames
 If (number_of_fill_frames < 0 or number_fill_frames > threshold) then
 endInterval()
 startInterval()
 else if (number_of_fill_frames > 0)then
 increment interval line number (to display gap on MWD)
 endif
 writeFrame() to output subsampled video to MWD
end While

The startInterval method initializes the MWD by calling the mwd class gap, init, and
intervalStart methods. It also displays the interval start timecode using the mwd class
caption method. The endInterval method displays the interval stop timecode using the
mwd class caption method.

The writeFrame method performs the L5 TMR frame decomutation, which extracts the
raw image lines from a L5 TMR major frame. The TMR major frame is directly
decomutated into subsampmled image lines for the MWD. The utility class endScan
method findEndScan is called. This is necessary to extract the scan direction. The
MWD class caption method to display the timecode for every Nth image line where N is
some programmable number such as 100 such that the spacing is sufficient so that the
captions do not overwrite one another. Next the decomutation, subsampling and MWD
output is performed as is described in the following PDL.

9/10/09 - 164 - DCS 104.4

PDL for the TMR decomutation in the FormatterL5::writeFrame method

Get scan_direction

First process the reflective band (band 1-5, 7)
Loop through all 6 reflective bands
 Loop through all 16 detectors
 If (current line/detector has been selected based on y-direction subsampling)then
 If (initfile bumpermode flag set)then
 Compute bumper mode offsets into the major frame for the current band/detector
 else
 Compute normal mode offsets into the major frame for the current band/detector
 endif
 If (scan_direction is forward)
 Loop through the Major frame extracting subsamped image data for the
 detector/band into a buffer in the forward direction (x-subsampled)
 else
 Loop through the Major frame extracting subsamped image data for the
 detector/band into a buffer in the reverse direction (x-subsampled)
 endif
 use the MWD class VIDEO method to write current band image data to MWD
 endif
 end detector loop
end band loop

Now process band 6
Loop through all 4 detectors
 If (current line/detector has been selected based on y-direction subsampling)then
 If (initfile bumpermode flag set)then
 Compute bumper mode offsets into the major frame for the current band/detector
 else
 Compute normal mode offsets into the major frame for the current band/detector
 endif
 If (scan_direction is forward)
 Loop through the Major frame extracting subsamped image data for the
 detector/band into a buffer in the forward direction (x-subsampled)
 else
 Loop through the Major frame extracting subsamped image data for the
 detector/band into a buffer in the reverse direction (x-subsampled)
 endif
 use the MWD class VIDEO method to write band 6 image data to MWD
 endif
end detector loop

every N lines use MWD::Caption to display timecode on the MWD

The L5 Formatter uses the following utility classes scanTime and endScan, which are
found in the source, files L5TMR_utility.cpp & L5TMR_utility.hpp. The key methods
from these classes are described here:

class endScan {

endScan(int start=6300, int stop=6340);
int findEndScan(int frame_num, L45FIFOFrame *frame);
int getDir() {return dir;};
void compute(int frame_num, unsigned char* data);

};

9/10/09 - 165 - DCS 104.4

The endScan::endScan() constructor initializes the current object with the start and
stop minor frame for the search. The findEndScan method searches for the end scan
pattern and then calls the compute method. The compute method performs the
extraction of all of the fields withing the L5 TMR endscan and stores them in the data
members to be retrieved when called for. The getDir method returns the int scan
direction data member dir. There are other data members and methods in the L5
endScan class are not used by the MWD formatter.

class scanTime {
double getTime(){return time;};
string& getMtime(){return mtime;};
getVoteError(){return worst_vote_error;};
private:
double time;
string mtime;
};

The compute method extracts all of the data bits that make up the various components
of the L5 TMR timecode. This is done by looping through the 6 minor frames that
make up the timecode and extracting the groups of 48 copies of each data bit and
majority voteing to compute the value of each bit. For each of the majority voted bits,
the worst-case majority vote error count is saved. The majority voted bits are
assembeled into the following components:

• Tens of days
• Tens of hours
• Tens of minutes
• Tens of seconds
• Hundreds of Milliseconds
• Single Milliseconds
• Spacecraft ID
• Hundreds of days
• Single Days
• Single Hours
• Single Minutes
• Single Seconds
• Tens of Milliseconds
• Sixteenths of Milliseconds

When all the bits are assembled, the various components parts of the timecode are
assembled as individual integer values. The component integers are assembled to
produce a numeric timecode in decimal seconds that is stored in a double precision
floating point data member time and as an ascii string which is stored in the string data
member mtime. The method getTime returns the numeric time as a double and the
method getMtime returns the ascii timecode as a string.

9/10/09 - 166 - DCS 104.4

4.3.2.3 Library Classes

4.3.2.3.1 Initfile

The Initfile class is a wrapper object around an initialization file that contains
standardized methods for dealing with these files. Each instance of this class contains
an initialization file that is held in memory. The contents of the initialization file may be
interrogated, updated, and saved back to disk through the methods of this class.

The normal use for opening, reading, and optionally writing initialization files with this
class is something like the following:

InitFile initfile("~/mydir/initfile.ini");
String s = initfile.getString("MySection","MyKeyword");
int n = initfile.getInteger("MySection","MyInteger",-1);
string s = initfile.getString(“MySection”,”MyString”,”Default”);
// etc.
initfile->save(); // Optional

9/10/09 - 167 - DCS 104.4

The format of an initialization file is generally as follows:

Default section

keyword0_1=value0_1
keyword0_2=value0_2
...
keyword0_N=value0_N

=section1

Section 1 Comments

keyword1_1=value1_1
keyword1_2=value1_2
...
keyword1_N=value1_N

=section2

Section 2 Comments

keyword2_1=value2_1
keyword2_2=value2_2
...
keyword2_N=value2_N

...

=sectionM

Section M Comments

keywordM_1=valueM_1
keywordM_2=valueM_2
...
keywordM_N=valueM_N

Initialization files have the following semantic rules:

 <RULE 1>

Leading blank characters are trimmed from all lines before the line is processed. So,
the first character of a line is the first non-blank character of the line.

<RULE 2>

Any line starting with a '#' or a '!' is a comment

9/10/09 - 168 - DCS 104.4

<RULE 3>

Any line starting with '=' is the beginning of a section. The section name should
immediately follow an be made up of any combination of letters including embedded
spaces. Leading and trailing white space are not considered. Some valid examples:
=DRIVES translates to "DRIVES"
= CURRENT DRIVES translates to "CURRENT DRIVES"

<RULE 4>

Any line starting with anything else and containing an "=" is considered to be a keyword
line. These lines start with a keyword that is followed by an '=', and then optionally end
with a value. Like section names, keywords can be made up of any string of
characters, except keywords may not contain '=' and may not start with "#' or '!'. For
example:
DESCRIPTION=A Test Program
DRIVE COUNT=2
DRIVE1= DLT10
DRIVE2 = DLT18

Note that for values:

• Everything past leading whitespace (tabs,blanks) and before trailing whitespace
is part of the value

• Numeric values are stored as strings

<RULE 5>

Any line that doesn't start with '#' or '!' or that doesn't contain a '=' is invalid. However,
the initfile routines currently handles lines it doesn't understand like comments.

<Other Notes>

Everything between the top of the file and the first section header is considered to be
the default section. It can be accessed by using an empty section name. If the default
section is deleted, everything above the first section header is deleted, including
comments. If the default section is cleared, everything above the first section header is
removed except comment lines.

Everything between a =section<n> and the next =section<n+1> belongs to section<n>.
If section<n> is deleted, all lines in between are deleted, including all comments. If
section<n> is cleared, all keyword lines will be deleted, but comments with the section
will be left unchanged. When a section is created, it is created at the end of the file,
with one preceding blank line, and with no comments

When a keyword is created, it is created at the end of the section, before any trailing
blank lines. When a keyword line is replaced, it is replaced in the same position.

9/10/09 - 169 - DCS 104.4

For an initialization file where keywords may be added by code, it is strongly suggested
that you follow one or both of these conventions:

A) Do not interleave comment lines with keyword lines
B) Place anticipated keywords with empty values in the file so that only updates

occur, leaving the comment structure untouched.

Section name and keyword matching is case-insensitive.

If the same section name occurs twice in a file, only the first section will be used.
Similarly, if the same keyword name occurs twice in a section, only the first keyword will
be used.

The complete synopsis of public entry points follows:
 InitFile(void);
 InitFile(string pathname);
 ~InitFile(void);
 bool load(string pathname);
 bool isLoaded(void);
 bool isModified(void);
 bool containsSection(const string §ion);
 bool containsKeyword(const string §ion, const string &keyword);
 string getName();
 string getString(const string §ion, const string &keyword);
 string getString(const string §ion, const string &keyword, const string &defValue);
 void setString(const string §ion, const string &keyword, const string &value);
 int getInteger(const string §ion, const string &keyword, int defValue);
 void setInteger(const string §ion, const string &keyword, int value);
 long long int getLong(const string §ion, const string &keyword,
 long long int defValue);
 void setLong(const string §ion, const string &keyword, long long int value);
 float getFloat(const string §ion, const string &keyword, float defValue);
 void setFloat(const string §ion, const string &keyword, float value);
 double getDouble(const string §ion, const string &keyword, double defValue);
 void setDouble(const string §ion, const string &keyword, double value);
 bool getBoolean(const string §ion, const string &keyword, bool defValue);
 void setBoolean(const string §ion, const string &keyword, bool value);
 void clearSection(const string §ion);
 void deleteSection(const string §ion);
 void deleteKeyword (const string §ion, const string &keyword);
 bool save();
 bool save(string pathname);

4.3.2.3.2 Log

The Log class provides a standard set of routines for opening, writing, and closing log
files. This logging system is designed to allow multiple processes created using the
Thread classes to log messages to a common file. The methods of this class are all
static, meaning the individual logging routines can use Log::xxx() to access the log
without having to include a global log object variable somewhere. Unfortunately the
downside of this is only a single log file can be managed by these routines.

Each message is logged to the file as a single line in the following standard form:

9/10/09 - 170 - DCS 104.4

YYYY-MM-DD HH:MM:SS | <pid> | <source> | <Method> | <Level> |
<Msg>

For example:

2002-03-28 11:39:34 | 138970 | lts.cpp | LTSInitializer | INFO |
Initializing main modules

The date, time, and process ID (pid) are automatically inserted into the message at the
time the message is logged. The remaining fields must be provided in the call to log
the message. An example of using the generalized method for logging a message is:

Log::message(LogINFO,__FILE__,"LTSInitializer","Initializing main
modules");

For convenience, individual shorthand methods for each level are provided:

Log::info(__FILE__,"LTSInitializer","Initializing main modules");

The logging routines also allow the minimum logging level to be dynamically set. Log
levels, in ascending order of priority are:

DEBUG Diagnostic information for developers/maintainers
INFO Informative messages for significant events
WARNING Messages that indicate minor problems
ERROR Messages that indicate major problems
FATAL Messages that indicate fatal problems (process exits)

The following table presents a synopsis of the methods are available for using in this
class:
Method Description
Static int open(const string
&logpath)

Open the log file stream. If logpath is an empty string,
if the file cannot be opened, or if this routine is not
explicity called the log routines will direct log output to
the standard output stream. Minimum_level will
establish the minimum priority log message that will
be output. If this method is not called all messages
will be logged.

int reopen(const string
&logpath)

Closes the current logfile, then opens a new one

int message(LogLevel level,
const string &source,
const string &routine,
const string &message)

General version of message logging method, log a
message using specified level, source file name,
routine name, and message.

int debug(const string
&source,
const string &routine,
const string &message)

Log message a level implied by name of method
called. All 5 methods call the message method to
actually log the message.

9/10/09 - 171 - DCS 104.4

int info(const string &source,
const string &routine,
const string &message)
int warning(const string
&source,
const string &routine,
const string &message)
int error(const string
&source,
const string &routine,
const string &message)
int fatal(const string
&source,
const string &routine,
const string &message)
void setLevel(LogLevel
minlevel)

Set a new minimum logging level

void flush(void) Flush any pending writes to the log file
int close(void) Close the log file

4.3.2.3.3 Thread
This source contains a set of classes that can be used to create and synchronize sproc
based threads. This implementation abstracts the underlying implementation of the
threads being used (sprocs or pthreads) so that it may be possible to switch the type in
use in the future without rewriting a lot of code. There are three classes currently
defined in this source:

Thread An abstract thread class that uses sprocs to create threads
Gate Implements a simplified mutex
Flag Implements a simplified condition variable

4.3.2.3.3.1 Abstract Thread
An abstract thread class encapsulates the complex code needed to construct and
manage threads into a tidy simple-to-use object. To create a thread one must create a
subclass of the Abstract Thread class and override the run method as follows:
class MyThread: public Thread
{
 virtual int run(void);
/}

int MyThread::run(void)
{
 int exit_status; // exit status for process
...code executed by thread goes here, thread exits on return
 return exit_status;
}

9/10/09 - 172 - DCS 104.4

Then, an instance of a thread object should be created. The thread will not run until
started using the start method.
MyThread myThread; // Thread object

int main()
{
 myThread.start(); // start the thread
...etc
}

There are many times when it is handy to determine the current thread. You can do
this by calling the static method:
Thread* currentThread = Thread::getCurrentThread();

When the thread classes are first used an internal thread object is constructed that is a
representation of the main thread. So, the above call even works from the main thread.

WARNING, you should not combine the use of any variant of fork() with the thread
methods. It is much safer to use the executeAndWait methods of this class.

9/10/09 - 173 - DCS 104.4

The following table contains a synopsis of the thread methods:
Method Description
Thread(void) Construct a thread object, thread not created until start

called
int start(void) Start the thread, creates a new thread, calls run(void)

as method of object. Returns PID of newly created
thread or error code. Files handles are implicitly
shared.

int start(bool shared_files) As above, but can be used to explicitly not share files.
pid_t getThreadID(void) const Gets the ID of the thread (if running)
ThreadStatus getStatus(void) Gets the status of the thread, one of tsACTIVE,

tsIDLE, tsDONE, or tsFAILED
bool setSignalHandling(int
sig, SigHandling sig_handling)

Set signal handling for signal to shIGNORE or
shDEFAULT. Used to ignore certain signals, such as
SIGPIPE

static Thread*
currentThread(void)

Get a pointer to the current thread, can be main
thread. Pointer can then be used to get status or ID of
thread.

static int executeAndWait
(const string &command,
const string &name, int
nice incr = 0)

These calls are used to fork() and exec() a detached
process without adversely impacting other processing
that is occurring. It is strongly recommended that
these calls be used instead of directly calling the Unix
methods. All variants accept a command line, a
process name, and a nice increment. The second
version also accept names for files to which the text
from standard out and standard error should be
appended. The third version accepts everything in the
second version along with the name of a directory to
set as default before executing the process

static int executeAndWait
(const string &command,
const string &name,
const string &std_out,
const string &std_err,
int nice incr = 0)
static int executeAndWait
(const string &command,
const string &name,
const string &directory,
const string &std_out,
const string &std_err,
int nice incr = 0)
~Thread(void); Cleanup a thread object. Note that as of this

implementation, this method does not cancel the
running thread and therefore should not be called until
the thread exits.

4.3.2.3.3.2 Gate

Gates are objects that may be used to synchronize access to a critical section of code
such as manipulating a linked list or a collection that is shared by multiple threads. One
should use a gate object as follows:
Gate gate; // a Gate, initially open

gate.enter(); // Enter critical section of code
...non-reentrant code here
gate.leave(); // Leave critical section of code

9/10/09 - 174 - DCS 104.4

The following table presents a synopsis of the Gate methods:
Method Description
Gate(void) Construct an initially open gate
void enter(void) Enter gate, will wait if some other thread has already

entered but not yet left gate. enter and leave method
calls must be balanced.

void leave(void) Leave gate, gate not really left until a leave is called
for every enter. Attempt to leave a gate without
entering will cause deliberate core dump via ::abort().

void yield(void) Momentarily release gate then reacquire. Allows other
threads to sneak in and get some time for long-
running locked operations.

bool isLocked(void) Returns true if gate has been entered, false otherwise.

~Gate(void) Releases resources in use by gate, should not be
called if other threads are still using the gate

4.3.2.3.3.3 Flag
Flags are used to wait for some other thread to signal a condition. The simplest use of
a flag object follows:
Flag flag; // A flag, initially reset

// <code in thread1>
flag.waitForSignal(); // Wait for other thread to set flag

// <code in thread2>
flag.signal(); // Set flag to unblock thread 1

Flag objects can also be used to implement a rendezvous between two processes:
// <code in thread1>
flag.waitForSignal(); // Wait for permission to run code
...code in rendezvous... // Actions thread 2 is waiting on
flag.reset(); // Indicate rendezvous complete

// <code in thread2>
flag.signalAndWait(); // Set flag to unblock thread 1
 // Wait for rendezvous to complete

9/10/09 - 175 - DCS 104.4

The following table presents a synopsis of the Flag methods:
Method Description
Flag(void) Construct an initially reset flag
bool signal(void) Set flag, returns previous state of flag. All processes

waiting for flag to be set are unblocked
bool reset(void) Reset flag, returns previous state of flag. All

processes waiting for flag to be reset are unblocked
bool waitForSignal(void) Block thread until flag is set. Returns state of flag

before call
bool waitForReset(void) Block thread until flag is reset. Returns state of flag

before call
bool resetAndWait(void) Reset flag then wait for it to be set. Returns state of

flag before call
bool signalAndWait(void) Set flag then wait for it to be reset. Returns state of

flag before call.
bool isSignaled(void) Returns state of flag without waiting.
~Flag(void) Releases resources in use by flag, should not be

called if other threads are still using the flag

4.3.2.3.4 Sockets
This source implements four classes that can be used to manage and use TCP/IP
sockets:

BaseSocket A wrapper around a socket descriptor, base of all others
Socket Implements methods common to all end-point sockets
ServerSocket Implements a socket to which clients can connect
ClientSocket Implements a client socket

To use these classes, the server process creates a server socket, then waits for the
client routine to connect as follows:
ServerSocket ss = new ServerSocket(APORT);
if (ss->getStatus() == ssSUCCESS)
{
 Socket as = ss->accept();
 if (as->getStatus() == ssSUCCESS)
 ...
//
// (or)
//
ServerSocket ss = new ServerSocket();
ss->open(APORT);
if (ss->getStatus() == ssSUCCESS)
{
 Socket as = ss->accept();
 ...

9/10/09 - 176 - DCS 104.4

The client process then connects to the server and send a message to it as follows:
ClientSocket cs = new ClientSocket("Server_IP",APORT);
if (cs->getStatus() == ssSUCCESS)
{
 status = cs.writeBuffer(AMessage,sizeof(AMessage));
 ...
//
// (or)
//
ClientSocket cs = new ClientSocket();
cs->connect("Server_IP",APORT);
if (cs->getStatus() == ssSUCCESS)
{
 status = cs.writeBuffer(AMessage,sizeof(AMessage));
 ...

The server process then reads the message, responds, and closes the connection as
follows:
while (processing) {
 status = as->readBuffer(AMessage,sizeof(AMessage));
 ... deal with message ...
 status = as=>writeBuffer(AResponse,sizeof(AResponse));
}
as->close();

Finally, the client reads the response and closes the connection from its end as follows:
while (processing) {
 status = cs->read(AResponse,sizeof(AResponse));
 ... Construct next message
..status = cs->write(AMessage,sizeof(AMessage));
}
// cs->close();

The server process can also close the server socket if desired:
ss->close();

9/10/09 - 177 - DCS 104.4

The socket can be used for multiple reads and writes if desired. There are a number of
entry points that can be used to read and write other types of data. These methods
insure that the data is written to the socket in the correct byte order, regardless of host
machine "endianism":
// read routines
b = socket->readByte(); // 8 bit unsigned
s = socket->readShort(); // 16 bit signed
i = socket->readInteger(); // 32 bit signed
l = socket->readLong(); // 64 bit signed
socket->readString(t); // C++ 'string'
// write routines
socket->writeByte(b); // 8 bit unsigned
socket->writeShort(s); // 16 bit signed
socket->writeInteger(i); // 32 bit signed
socket->writeLong(l); // 64 bit signed
socket->writeString(t); // C++ 'string'

The status of a socket can be checked at any time:
SocketStatus socket_status = socket->getStatus();

Any status other than ssSUCCESS for an open socket indicates an error. ssCLOSED
is normal for a closed socket. Any time an error occurs on a socket, the socket is
automatically closed.

To provide a little security for sockets, both the server and the client process can
simultaneously use the secureCheck method. It is recommended that this be done
immediately after startup. Immediately after the accept by the server and the connect
by the client, the following call should be made:
asocket->secureCheck("Some Password String");

The passwords on both side must match. When called, each half of the connection will:

1. send a 16 byte random sequence of bytes to the opposite side.
2. receive and encrypt the 16 byte sequence using the password
3. send the encrypted 16 bytes back
4. compare the encrypted result received with what it should be
5. set ssSECURE_ERROR and close the socket if it doesn't match

The encryption used is a relatively simplistic hashing function but it should be adequate
for moderately effective security.

The following table presents a synopsis of the ServerSocket methods
Method Description
ServerSocket(void) Construct a closed server socket
ServerSocket(int port) Construct a server socket open on a specified port.
void open(int port) Open a closed socket on a specified port
Socket* accept(void) Accept a connection on a server socket

9/10/09 - 178 - DCS 104.4

The following table presents a synopsis of the ClientSocket methods
Method Description
ClientSocket(void) Construct a closed client socket
ClientSocket(string
inet_address,
int port)

Construct a client socket and connect to remote
server socket

void connect(string
inet_address,
int port)

Connect a closed client socket to a specified remote
server socket

Socket* accept(void) Accept a connection on a server socket

The following table presents a synopsis of the methods available to both client and
accept sockets:
Method Description
int readBuffer(void* msg, int
msg_siz)

Read a buffer from socket, returns actual bytes read

int writeBuffer(void* msg, int
msg_siz)

Write a buffer to socket, returns actual bytes written

unsigned char readByte(void) Shorthand read routines that deal with proper big-
endian conversion short readShort(void)

int readInteger(void)
long long int readLong(void)
void readString(string &data)
void writeByte(unsigned char
data)

Shorthand write routines that deal with proper big-
endian conversion

void writeShort(short data)
void writeInteger(int data)
void writeLong(long long int
data)
void writeString(string &data)
bool secureCheck(string
password)

Security check on socket

SocketStatus getStatus(void) Get status of socket
void close(void) Close the socket
~Socket() Destroy socket (called via delete), closes first if socket

open

No attempt is made at the current time to implement asynchronous connections on
these sockets. All calls wait until operation has completed or error occurs.

No attempt is made to handle SIG_PIPE signals, so a broken connection will generally
result in a process exit unless handled externally.

4.3.2.3.5 Strings
This source contains a set of classes that can be used as a substitute for the C++
Standard Template Library (STL) string package. This version does not use class
templates like the STL version does. Because of this there are two significant
differences in this package and the STL implementation.

1) This package provides no support for iterators

9/10/09 - 179 - DCS 104.4

2) This package does provide overloaded constructors and operators for converting
numeric types (other than character) to string.

Also this class is defined with a class name of 'String' to differentiate it from the STL
class 'string'. However, to facilitate a quick change to this class from the other class,
there is a typedef equivalent named 'string'. This typedef may be commented out if
both types of strings are needed in the same application.

No attempt is being made in this header to define in detail what each of the methods
does. Generally, the methods follow the conventions of the STL version – please find
the documentation for that.

A special note for the overloaded integer constructors and operators. These are
somewhat ambiguous with the similar methods for the char type. So, there is no
overloaded integer operator for a character, in other words the following work properly.
String s('a'); // s becomes "a";
String s(5); // s becomes "5";

But the following might be a bit confusing:
char c = 47;
String s(c); // s is NOT "47" !!!
int n = c;
s = n; // s is now "47"

Finally, this package generally accepts all values for arguments and makes a best
attempt to make sense out of them. For example:
String s = "ABCD";
s.replace(2,"0123"); // s = "AB0123"
s.insert(100,"0123"); // s becomes "AB01230123"

In other words, positions and lengths are modified to reflect what most closely
resembles a legal operation.

The following list presents a synopsis of the methods in this class. Note that in the
tables, the following symbology conventions apply:

s a string
cs C string (pointer to null terminated string)
c a character
n a integer number (other than char)
f a floating number (float or double)
is istream
os ostream
[x] optional
opos,olen position and length in string object
spos,slen position and length in string argument
cpos,clen position and length of C string argument

9/10/09 - 180 - DCS 104.4

String();
String(s);
String(s[,spos[,slen]]);
String(cs[,clen]);
String(char c);
String(n,c);
String(n);
String(f);
~String(void);
char at(index);
String &append(c);
String &append(cs[,clen]);
String &append(s[,spos[,slen]]);
String &assign(c);
String &assign(cs[,clen]);
String &assign(s[,spos[,slen]]);
size_type capacity(void) const;
int compare(opos,olen,s[,spos[,slen]]);
int compare(opos,olen,cs[,clen]);
int compare(cs[,clen]);
int compare(s[,spos[,slen]]);
int copy(cs[,olen,opos]]) const;
char* c_str();
char* data();
bool empty();
String &erase([opos[,olen]]);
size_type find(c[,opos]);
size_type find(cs[,opos[,clen]]);
size_type find(s[,opos[,slen]]);
size_type find_first_of(c[,opos]);
size_type find_first_of(cs[,opos[,clen]]);
size_type find_first_of(s[,spos[slen]]);
size_type find_first_not_of(c[,opos]);
size_type find_first_not_of(cs[,opos[,clen]]);
size_type find_first_not_of(s[,opos[,slen]]);
size_type find_last_of(c[,opos]);
size_type find_last_of(cs[,opos[,clen]]);
size_type find_last_of(s[,opos[,slen]]);
size_type find_last_not_of(c[,opos]);
size_type find_last_not_of(cs[,opos[,clen]]);
size_type find_last_not_of(s[,opos[,slen]]);
istream &getline(is,s[,c]);
String &insert(opos,c);
String &insert(opos,cs[,clen]);
String &insert(opos,s[,spos[,slen]]);
String &insert(opos,n,c);
size_type length();
String lower();
size_type max_size();
const String &replace(opos,c);

9/10/09 - 181 - DCS 104.4

const String &replace(opos,cs[,clen]);
const String &replace(opos,s[,spos[,slen]]);
const String &replace(opos,n,c);
void resize(n[,c]);
size_type rfind(c[,opos]);
size_type rfind(cs[,opos[,clen]]);
size_type rfind(s,[opos[,slen]]);
size_type size();
String substr([opos[,olen]]);
void swap(s);
String upper();
s = s1;
c = s[n];
s[n] = c;
s += s;
s += cs;
s += c;
s += n;
s += f;
(String) s + s;
(String) cs + s;
(String) s + cs;
(String) c + s;
(String) s + c;
(String) n + s;
(String) s + n;
(String) f + s;
(String) s + f;
(bool) s == s;
(bool) cs == s;
(bool) s == cs;
(bool) s != s;
(bool) cs != s;
(bool) s != cs;
(bool) s > s;
(bool) cs > s;
(bool) s > cs;
(bool) s < s;
(bool) cs < s;
(bool) s < cs;
(bool) s >= s;
(bool) cs >= s;
(bool) s >= cs;
(bool) s <= s;
(bool) cs <= s;
(bool) s <= cs;
(ostream) os << s;
(istream) is >> s;

9/10/09 - 182 - DCS 104.4

4.3.2.3.6 Containers
This source contains a set of classes that can be used to maintain collections of pointer
to items. The following are the main classes that make up this package:

Container an abstract container object
Sequence an abstract container whose members are stored order
List an sequence container that is a dual linked list
Vector an sequence container that is a dynamically sized vector
Map an abstract map container
HashMap a map container that uses hashing (NOTE UNTESTED !!!)

The Container, Sequence, and Map classes are all abstract and may only be used as a
pointer (or reference) to a one of the other subclasses. To use the subclasses, create
one of the container objects:
Vector defvec(); //Creates a vector with default sizes
(64,64)
Vector vec(128,256) //Starts with 128 entries, extends 256 at
a time
List() alist; //Creates a linked list
HashMap map(); //Create a map default 512 entries, 25%
extend
HashMap map(100,10.0); //Create a map with 100 entries, 10%
extend

These classes all store void* pointers so the actual type of Object or variable being
referenced is not known to these classes. You can pretty much use any pointer type
where an Right Hand Side value is required. Here are a few examples, using map, vec,
and alist as defined above:
MyStruct *ms = new MyStruct;
map.put(14,ms);

MyIntegers *mi = new Integer[4654];
vec[14] = mi;

MyClass *mc = new MyClass();
alist.add(mc);

However, when reading out of the containers, you will normally have to typecast the
results of the method call back to your type. Here are some related examples:
ms = (MyStruct*)map.get(14);
mi = (MyIntegers*)v[14];
mc = (MyClass*)l.pop_back();

Sequence Containers

The Sequence containers are used to maintain collections of pointers that are in some
order. These containers actually behave mostly like dynamically sized arrays. There

9/10/09 - 183 - DCS 104.4

are two types, Vector and List. Which one to use is really dependent on how you want
to access the list:

Comparison Category Vector List
Memory Usage One pointer per item Two pointers per item
Random Access Faster Slower
Insert/Delete Slow except a back Fast everywhere
Push/Pop Slow in front, fast in back Fast for both

A Vector is probably better for most lists of items where you will not be
inserting/removing items into the list other than at the end. Indexing operations into
vectors are very fast when compared to a List, particularly if the indexing is not done in
order.

However, the List class does do some optimizations to improve performance. Consider
a loop such as the following:

for (id_type n = 0; n < my_list.count(); n++)
{
 my_item = (MyItem*)my_list[n];
 // Do something with my_item...
}

The List class will save its last position so that it knows how far to move to the next
item. In this loop, the list class will only have to traverse one link to get to the next
entry. So, while random access will not be very efficient, iterating over the list offers
acceptable performance.

The index value for all Sequence container methods that accept one is zero relative. It
can refer to any position in the list, or in some cases the position immediately past the
last item of the list. In general, a reference to an illegal index will cause the container
class to throw an exception with a descriptive char* message. Inserting an element into
a container causes it to be placed BEFORE the specified index.

If you know that you are going to be using a very large vector, it is strongly suggested
that you make the initial and extend sizes adequately large in the constructor for the
object. A significant performance penalty is incurred for extending the list.

Map Containers

NOTE - The Map containers are coded, but mostly untested 07/19/2002 ...RMS

The Map classes are for situations where you want to look up an object by an integer
'key' value. Unlike the Sequence classes, removing or inserting items from or to a map
has no effect on the numbering of the remaining objects.

9/10/09 - 184 - DCS 104.4

Maps are generally faster at random access than Lists, but slower than Vectors. For a
strictly sequential list, they use more memory than either of the other two, but use less
when there are gaps in the numbering.

The Map containers do not use indicies. Instead, they use unsigned integer 'keys'. No
two entries in a map may contain the same key. Any key value may be used at any time
without impacting overall container performance. In other words, statistically the
following two pairs of instructions should take about the same amount of time - and will
use similar amounts of memory:
map.put(1,item1); // put 1 with key = 1
map.put(2,item2); // put 2 with key = 2

map.put(1,item1); // put 1 with key = 1
map.put(1000000,item2); // put 2 with key = 1000000

As with the Vector class, if you know you are going to use a very large HashMap, it is
best to allocate a large initial size for the map. If the container runs out of room, it must
resize the hash table, and then rehash all of the values in the table. This can be quite
time consuming on large tables, much worse than that of a Vector. Also, use caution
when selecting an extend size. The extend size is expressed as a percentage amount
by which to expand the list each time a rehash is required. The largest legal value is
200%, which causes the table to triple in size each time it is expanded.

Limitations

One HUGE consideration is that the clear method does not make any attempt to delete
the items in the container. You must delete all the items before doing a clear to really
clean up.

The objects of this package are VERY DEFINITELY NOT thread safe.

Synopsis

The following table presents a synoposis of the methods available in all of these
classes:
Method Description
bool isEmpty() const; Returns true if container is empty
size_type size(void) const; Returns number of items in container
void clear(void); Emptys container BUT DOES NOT DELETE ITEMS!!!

bool contains(void *item)
const;

Determines in container holds item

bool remove(void *item); Removes item from container

The following table presents a synoposis of the methods available in all Sequence
classes (List and Vector):

9/10/09 - 185 - DCS 104.4

Method Description
void add(void *item); Add item to container at end (same as push_back)
void add(Sequence &sequence,
index_type sindex = 0,
size_type ssize = no_size);

Add all or specified items from another to this
sequence

void* extract(index_type
index);

Remove item from sequence at position and return
pointer to it

void* pop_front(void); Remove the first item from the sequence and return
pointer to it

void* pop_back(void); Remove the last item from the sequence and return
pointer to it

void push_front(void *item); Add an item to the front of the sequence
void push_back(void *item); Add an item to the back of the sequence
void erase(index_type index,
size_type size = no_size);

Remove a range of items from the sequence, does not
remove items from memory

void* get(index_type index); Get an item at a position in the sequence
void insert(index_type index,
void *item);

Insert an item into the sequence at a position

void insert(index_type index,
Sequence &sequence,
index_type sindex = 0,
size type ssize = no size)

Insert all or specified items from another to this
sequence

index_type indexOf(void *item)
const;

Returns the position of an item in the sequence

void* put(index_type index,
void *item);

Replaces item at position in list with new item. Old
item is not removed from memory

void* &operator[](index_type
index);

Returns item at position in list

The following table presents a list of the methods unique to the Vector class:
Method Description
Vector(void); Construct an empty vector with default sizes
Vector(size_type isize,
size_type esize);

Construct an empty vector with explicit initial and
extend sizes

Vector(Sequence &sequence,
index_type index = 0,
index_type size = no_size);

Construct a vector from some or all of the items in
another sequence

~Vector(void); Remove the vector from memory, does not delete
items in vector

The following table presents a list of the methods unique to the List class:
Method Description
List(void); Construct an empty list with default sizes
List(Sequence &sequence,
index_type index = 0,
index_type size = no_size);

Construct a list from some or all of the items in
another sequence

~List(void); Remove the list from memory, does not delete items
in list

The following table presents a list of the methods available in all Map classes, currently
only HashMap:
Method Description
bool erase(key_type key); Remove item with specified key
bool containsKey(const
key_type &key) const;

Returns true if map contains item with a key

9/10/09 - 186 - DCS 104.4

void* extract(const key_type
&key);

Removes item from list with specified key

void* get(const key_type &key)
const;

Gets item from list with specified key

void* put(const key_type &key,
void* item) const;

Replaces item in list with specified key, returns
previous item with key if any, or null otherwise

The following table presents a list of the methods unique to the List class:
Method Description
HashMap(void); Construct an empty hash map with default size and

extend percentage
HashMap(index_type isize,
float extend_percent = 25.0);

Construct a hashmap with specific initial size and
extend percentage

~HashMap(void); Remove the hashmap from memory, does not delete
items in list

4.3.2.3.7 Time
The Time class provides several useful features; time is stored at the nano-second
precision, and allows full operator manipulation of time objects. The Time class objects
are of two types “relative” and “absolute”. Relative times are quantities of time between
events that cannot be expressed as a date time, conversely absolute times can be
expressed as a date time.

String conversion logic of the ostream operator understands the difference between
absolute times which are printed in unix standard "Mon Apr 30 10:26:51 2001" mode
and relative times which are printed based on their size such as "3 days, 4503 seconds"
or "85.024 seconds" or "88324 nanoseconds"

For example the following is a use of relative and absolute Time objects:
 Time t1 ;
 {...some operation to measure...}
 Time t2 ; // t1 and t2 are absolute times
 Time t3 = (t2-t1) ; // t3 is now a relative time
 cout << "Operation took " << t3 << endl ;
 t2 += 100*Seconds_in_a_day ;
 cout << "The meat in the freezer is good until " << t2 <<
endl ;

The public member functions are:

9/10/09 - 187 - DCS 104.4

 Time(void) ;
 Time(unsigned long long seconds, unsigned long long nanoseconds) ;
 Time(double seconds) ;
 const Time& reset(unsigned long long seconds, unsigned long long
nanoseconds) ;
 static string printNow(void) ;
 static string printZulu(void) ;
 Time& now(void) ;
 void zulu(void) ;
 void local(void) ;
 int julianDay(void) const ;
 int year(void) const ;
 string yyyymmddhhmmss(void) const ;
 const Time &operator=(const Time &) ;
 const Time &operator=(const double seconds) ;
 Time operator+(const Time &) const ;
 Time operator+(const signed long long) const ;
 Time operator+(const int) const ;
 Time operator+(const double) const ;
 Time operator-(const Time &) const ;
 Time operator-(const signed long long) const ;
 Time operator-(const int) const ;
 Time operator-(const double) const ;
 bool operator<(const double) const ;
 bool operator<(const Time &) const ;
 bool operator<(const int) const ;
 bool operator>(const double) const ;
 bool operator>(const Time &) const ;
 bool operator>(const int) const ;
 operator double() const ;

The static printNow() member returns the current local zone absolute time as a string
without the need to create an object, such that you can say:
 cout << "Starting at " << Time::printNow() << endl;

You may use the static printZulu() member to return the current GMT absolute time.

The friend function toString(Time) converts a time to a printable string, this method is
used internally to support the ostream << operator.

Two friend sleep routines that accept a Time argument are sleepFor(Time) which
allows stored relative times to be slept through, and sleepUntil(Time) allows stored
absolute times to be slept until reached. Both return 0 on success or 1 if awoken early.

The zulu() and local() member functions are provided such that control over absolute
time conversions in either local or GMT time zones can be adjusted. Default zone is
local.

An update now() member is included to allow a previously instantiated object to be
reset to the current time:

9/10/09 - 188 - DCS 104.4

 Time t ; // t holds the time at instantiation
 { ... some time later ... }
 t.now() ; // t is updated to the current time
 t = t + 1.005 ; // t now holds the a time 1 second
 // and 5 milliseconds in the future

The reset(unsigned int seconds, unsigned int nanoseconds) member allows a
previously instantiated object to be reset to a specified time, similar to the assignment
"=" operator, except allows seconds and nanoseconds to be specified independently.

All additions and subtraction operators are in units of Time objects or int/float seconds.

Adding and subtracting "int"s MAY result in a loss of the nanosecond accuracy. Use
"double"s or Time objects to maintain sub-second accuracy.

The following members are for Absolute times only!! Will return –1 when called with
relative times.
 julianDay() – this member returns the day-of-year where Jan 1 is integer 1
 year() – this member returns the integer year.
 yyyymmddhhmmss() – this member returns a string in the member name form.

4.3.2.3.8 Timer
This source contains an abstract timer class. Users derive subclasses of this class,
overriding the onUpdate method. The overridden update method will be called when
the timer elapses.

Timers are implemented using a single thread (a descendent of the an abstract Thread)
that calls all of the update entry points. This thread is started when the first thread is
added, and stops when the last timer is deleted.

Timers allow specification of their update interval in milliseconds. However, the thread
sleeps at a period of 10 milliseconds, so timers will usually not be called any more often
than that. Furthermore, timers all share the same thread so a long-running onUpdate()
method could cause a delay in other methods.

Timers can either be one-shot or repeating. This behavior is controlled by the return of
the onUpdate method. If the onUpdate method returns true, the timer will be reenabled
for another interval.

It is critical to understand that the onUpdate method is running in a separate thread.
This means that you must use Gate objects of the Thread class to synchronize access
to complex data structures.

To create a timer one should create a subclass of the Timer class and override the
onUpdate method as follows:

9/10/09 - 189 - DCS 104.4

//
 class MyTimer: public Timer
 {
 virtual bool onUpdate(void);
 }
//
 bool MyTimer::onUpdate(void)
 {
 ...code executed by timer goes here, return true to run
repeatedly
 }

Then, an instance of a timer object should be created, its interval should be specified,
and it should be enabled
//
MyTimer myTimer; Timer object
//
int main()
{
 myTimer.setInterval(100); Update every 1/10 second
 myTimer.enable(); Enable the timer
 ...
}

The following table presents a synopsis of the Timer methods:
Method Description
Timer(void); Construct a timer object, will be disabled with an

interval of zero. Note that a Timer can only be
constructed through a subclass of Timer, because the
OnUpdate method is abstract.

int setInterval(int
milliseconds)

Set the timers interval in milliseconds

void reset(void) Reset (disables) the timer. Next update will be set to
current time plus the interval.

void enable(void) Enables timer
virtual bool onUpdate(void)
const = 0

Abstract virtual method, must be overridden. Methods
will be called at approximately update interval after
enable, and periodically thereafter if true is returned.
onUpdate methods must not take inordinate amounts
of time and should never sleep because all onUpdate
methods run from the same thread.

~Timer(void); Remove the Timer from memory, may also remove
thread if last timer object

4.3.2.3.9 Strutils
The StrUtils source contains a set of functions that can be used to convert numeric
arguments to a string. The following is a list of the available calls:

9/10/09 - 190 - DCS 104.4

string toString(long long int value);
string toString(long long int value, int precision);
string toString(long long int value, int width, int precision);
string toString(int value);
string toString(int value, int precision);
string toString(int value, int width, int precision);
string toString(short int value);
string toString(short int value, int precision);
string toString(short int value, int width, int precision);
string toString(unsigned char value);
string toString(unsigned char value, int precision);
string toString(unsigned char value, int width, int precision);
string toString(signed char value);
string toString(signed char value, int precision);
string toString(signed char value, int width, int precision);
string toString(double value);
string toString(double value, int precision);
string toString(double value, int width, int precision);
string toString(float value);
string toString(float value, int precision);
string toString(float value, int width, int precision);

4.4 Moving Window Display Component
The MWD Component is responsible for accepting commands from the

MWDFormatter. The MWD component will be basically re-used “as-is”.

9/10/09 - 191 - DCS 104.4

Section 5 Requirements Traceability
SRS SDD Software Unit

3.1.1 n/a
3.1.1.1 n/a
3.1.1.1.1 3.1.1.2.3 mac_GenSuptSchedule

3.1.1.2.5 mac_SendSetup
3.1.1.2.6 mac_ManCapture

3.1.1.1.2 3.1.1.2.3 mac_GenSuptSchedule
3.1.1.2.5 mac_SendSetup
3.1.1.2.6 mac_ManCapture

3.1.1.2 n/a
3.1.1.2.1 n/a
3.1.1.2.1.1 3.1.1.2.5 mac_SendSetup
3.1.1.2.1.2 3.1.1.2.5 mac_SendSetup
3.1.1.2.1.3 3.1.1.2.5 mac_SendSetup
3.1.1.2.1.4 3.1.1.2.5 mac_SendSetup
3.1.1.2.2 3.1.1.7.2 mac_ui_edit_capt_parms
3.1.1.2.3 3.1.1.2.5 mac_SendSetup
3.1.1.2.4 3.1.1.2.5 mac_SendSetup
3.1.1.3 n/a
3.1.1.3.1 3.1.1.2.6 mac_ManCapture
3.1.1.3.1.1 3.1.1.2.6 mac_ManCapture
3.1.1.3.1.2 3.1.1.2.6 mac_ManCapture
3.1.1.3.1.3 3.1.1.2.6 mac_ManCapture
3.1.1.3.1.4 3.1.1.2.6 mac_ManCapture
3.1.1.3.2 3.1.1.7.6 mac_ui_manual_capt
3.1.1.3.3 3.1.1.2.6 mac_ManCapture
3.1.1.3.4 3.1.1.2.6 mac_ManCapture
3.1.1.4 n/a
3.1.1.4.1 3.1.1.2.3 mac_GenSuptSchedule
3.1.1.4.2 3.1.1.2.3 mac_GenSuptSchedule
3.1.1.4.3 3.1.1.7.3 mac_ui_edit_cont_sched
3.1.1.4.4 3.1.1.2.3 mac_GenSuptSchedule
3.1.1.4.5 3.1.1.2.3 mac_GenSuptSchedule
3.1.1.5 n/a
3.1.1.5.1 3.1.2.6 Raw File Transfer Component (CTS)
3.1.1.5.2 3.1.2.1 AutoCapture Component
3.1.1.5.3 3.1.2.6 Raw File Transfer Component (CTS)
3.1.1.5.4 3.1.2.2 Raw Data Capture Component
3.1.1.5.4.1 3.1.2.2 Raw Data Capture Component
3.1.1.5.4.2 3.1.2.2 Raw Data Capture Component
3.1.1.5.4.3 3.1.2.2 Raw Data Capture Component
3.1.1.5.4.4 3.1.2.2 Raw Data Capture Component
3.1.1.5.4.5 3.1.2.2 Raw Data Capture Component

9/10/09 - 192 - DCS 104.4

SRS SDD Software Unit

3.1.1.5.4.6 3.1.2.2 Raw Data Capture Component
3.1.1.5.4.7 3.1.2.2 Raw Data Capture Component
3.1.1.5.4.8 3.1.2.2 Raw Data Capture Component
3.1.1.5.5 3.1.2.2 Raw Data Capture Component
3.1.1.5.6 3.1.2.2 Raw Data Capture Component
3.1.1.5.6.1 3.1.2.2 Raw Data Capture Component
3.1.1.5.6.2 3.1.2.2 Raw Data Capture Component
3.1.1.5.6.3 3.1.2.2 Raw Data Capture Component
3.1.1.5.6.4 3.1.2.2 Raw Data Capture Component
3.1.1.5.6.5 3.1.2.2 Raw Data Capture Component
3.1.1.5.6.6 3.1.2.2 Raw Data Capture Component
3.1.1.5.6.7 3.1.2.2 Raw Data Capture Component
3.1.1.5.6.8 3.1.2.2 Raw Data Capture Component
3.1.1.5.6.9 3.1.2.2 Raw Data Capture Component
3.1.1.5.6.10 3.1.2.2 Raw Data Capture Component
3.1.1.5.6.11 3.1.2.2 Raw Data Capture Component
3.1.1.5.6.12 3.1.2.2 Raw Data Capture Component
3.1.1.5.6.13 3.1.2.2 Raw Data Capture Component
3.1.1.5.6.14 3.1.2.2 Raw Data Capture Component
3.1.1.5.6.15 3.1.2.2 Raw Data Capture Component
3.1.1.5.6.16 3.1.2.2 Raw Data Capture Component
3.1.1.5.6.17 3.1.2.2 Raw Data Capture Component
3.1.2 n/a
3.1.2.1 n/a
3.1.2.1.1 3.1.1.1.1 Table MISSION_ACCT
3.1.2.1.2 3.1.1.1.1 Table MISSION_ACCT
3.1.2.2 n/a
3.1.2.2.1 3.1.1.1.2 Table DESTINATION_ACCT
3.1.2.2.2 3.1.1.1.2 Table DESTINATION_ACCT
3.1.2.2.3 3.1.1.1.2 Table DESTINATION_ACCT
3.1.2.3 n/a
3.1.2.3.1 3.1.1.1.3 Table ROUTING_ACCT
3.1.2.3.2 3.1.1.1.3 Table ROUTING_ACCT
3.1.2.4 n/a
3.1.2.4.1 3.1.1.1.9 Table TRANSFER_ACCT
3.1.2.4.2 3.1.1.1.9 Table TRANSFER_ACCT
3.1.2.4.3 3.1.1.1.9 Table TRANSFER_ACCT
3.1.2.4.4 3.1.1.1.9 Table TRANSFER_ACCT
3.1.2.4.5 3.1.1.1.9 Table TRANSFER_ACCT
3.1.2.5 n/a
3.1.2.5.1 n/a
3.1.2.5.2 3.1.1.1.9 Table TRANSFER_ACCT
3.1.2.5.3 3.1.1.1.9 Table TRANSFER_ACCT
3.1.3 n/a

9/10/09 - 193 - DCS 104.4

SRS SDD Software Unit

3.1.3.1 n/a
3.1.3.1.1 3.1.1.2.2 mac_IngestContact
3.1.3.1.2 3.1.1.2.2 mac_IngestContact
3.1.3.1.3 n/a
3.1.3.1.4 3.1.1.2.1 mac_DDS
3.2.1 n/a
3.2.1.1 n/a
3.2.1.1.1 3.1.1.2.1 mac_DDS
3.2.1.1.2 3.1.1.2.2 mac_IngestContact
3.2.1.1.3 3.1.1.2.2 mac_IngestContact
3.2.1.1.4 3.1.1.2.2 mac_IngestContact
3.2.1.1.5 3.1.1.2.3 mac_GenSuptSchedule
3.2.1.1.6 3.1.1.2.6 mac_ManCapture
3.2.1.1.7 3.1.1.2.5 mac_SendSetup
3.2.1.1.8 3.1.1.2.6 mac_ManCapture
3.2.1.1.9 3.1.1.2.1 mac_DDS
3.2.1.1.10 3.1.1.2.1 mac_DDS
3.2.1.1.11 3.1.1.7.9 mac_ui_DDS_config
3.2.1.2 n/a
3.2.1.2.1 3.1.1.3.1 mac_BackupArchive
3.2.1.2.2 3.1.1.2.1 mac_DDS
3.2.1.2.2.1 3.1.1.2.1 mac_DDS
3.2.1.2.2.2 3.1.1.2.1 mac_DDS
3.2.1.2.2.3 3.1.1.2.1 mac_DDS
3.2.1.2.3 3.1.1.3.1 mac_BackupArchive
3.2.1.2.4 3.1.1.3.1 mac_BackupArchive
3.2.1.2.5 3.1.1.3.1 mac_BackupArchive
3.2.1.2.6 3.1.1.3.1 mac_BackupArchive
3.2.1.2.7 3.1.1.3.1 mac_BackupArchive
3.2.1.2.7.1 3.1.1.3.1 mac_BackupArchive
3.2.1.2.7.2 3.1.1.3.1 mac_BackupArchive
3.2.1.2.7.3 3.1.1.3.1 mac_BackupArchive
3.2.1.2.7.4 3.1.1.3.1 mac_BackupArchive
3.2.1.2.8 3.1.1.2.1 mac_DDS
3.2.1.2.9 3.1.1.1.12 Table DCS_CONFIGURATION,

3.1.1.2.1 mac_DDS,
3.1.1.7.9 mac_ui_DDS_config

3.2.1.2.10 3.1.1.3.1 mac_BackupArchive
3.2.1.2.10.1 3.1.1.3.1 mac_BackupArchive
3.2.1.2.10.2 3.1.1.3.1 mac_BackupArchive
3.2.1.2.10.2.1 3.1.1.3.1 mac_BackupArchive
3.2.1.2.10.2.2 3.1.1.3.1 mac_BackupArchive
3.2.1.2.10.2.3 3.1.1.3.1 mac_BackupArchive
3.2.1.2.10.3 3.1.1.3.1 mac_BackupArchive

9/10/09 - 194 - DCS 104.4

SRS SDD Software Unit

3.2.1.2.10.3.1 3.1.1.3.1 mac_BackupArchive
3.2.1.2.10.3.2 3.1.1.3.1 mac_BackupArchive
3.2.1.2.10.3.3 3.1.1.3.1 mac_BackupArchive
3.2.1.2.11 3.1.1.3.1 mac_BackupArchive
3.2.1.2.11.1 3.1.1.3.1 mac_BackupArchive
3.2.1.2.11.2 3.1.1.3.1 mac_BackupArchive
3.2.1.2.12 3.1.1.3.1 mac_BackupArchive
3.2.1.3 n/a
3.2.1.3.1 3.1.1.5.1 mac_Restage
3.2.1.3.2 3.1.1.5.1 mac_Restage
3.2.1.3.3 3.1.1.5.1 mac_Restage
3.2.1.3.4 3.1.1.5.1 mac_Restage
3.2.1.3.5 3.1.1.5.1 mac_Restage
3.2.1.4 n/a
3.2.1.4.1 3.1.1.4.1 mac_DeleteRawFiles
3.2.1.4.1.1 3.1.1.4.1 mac_DeleteRawFiles
3.2.1.4.1.2 3.1.1.4.1 mac_DeleteRawFiles
3.2.1.4.1.3 3.1.1.4.1 mac_DeleteRawFiles
3.2.1.4.2 3.1.1.4.1 mac_DeleteRawFiles
3.2.1.4.3 3.1.1.4.1 mac_DeleteRawFiles
3.2.1.5 n/a
3.2.1.5.1 3.1.1.1.2 Table DESTINATION_ACCT,

3.1.1.1.3 Table ROUTING_ACCT,
3.1.1.1.9 Table TRANSFER_ACCT,
3.1.1.2.1 mac_DDS

3.2.1.5.2 3.1.1.1.9 Table TRANSFER_ACCT,
3.1.1.2.1 mac_DDS

3.2.1.6 n/a
3.2.1.6.1 3.1.1.7.12 mac_ui_rawfile_details
3.2.1.6.2 3.1.1.7.1 mac_ui_DDS_main,

3.1.1.7.12 mac_ui_rawfile_details
3.2.1.6.3 3.1.1.7.10 mac_ui_mission_config
3.2.1.6.4 3.1.1.7.12 mac_ui_rawfile_details
3.2.1.6.5 3.1.1.7.3 mac_ui_edit_cont_sched
3.2.1.6.6 3.1.1.7.3 mac_ui_edit_cont_sched,

3.1.1.7.6 mac_ui_manual_capt,
3.1.1.7.12 mac_ui_rawfile_details

3.2.1.6.7 3.1.1.7.6 mac_ui_manual_capt
3.2.1.6.8 3.1.1.7.1 mac_ui_DDS_main
3.2.1.6.9 3.1.1.7.1 mac_ui_DDS_main
3.2.1.6.10 3.1.1.7.1 mac_ui_DDS_main

9/10/09 - 195 - DCS 104.4

SRS SDD Software Unit

3.2.1.6.11 3.1.1.7.2 mac_ui_edit_capt_parms,
3.1.1.7.9 mac_ui_DDS_config,
3.1.1.7.10 mac_ui_mission_config,
3.1.1.7.11 mac_ui_dest_config

3.2.1.6.12 3.1.1.7.2 mac_ui_edit_capt_parms,
3.1.1.7.9 mac_ui_DDS_config

3.2.1.7 n/a
3.2.1.7.1 3.1.1.6.1 mac_JournalFileEntry
3.2.2 n/a
3.2.2.1 n/a
3.2.2.1.1 3.1.2.1 AutoCapture Component
3.2.2.1.2 3.1.2.1 AutoCapture Component
3.2.2.1.3 3.1.2.1 AutoCapture Component
3.2.2.1.3.1 3.1.2.1 AutoCapture Component
3.2.2.1.3.2 3.1.2.1 AutoCapture Component
3.2.2.1.4 3.1.2.1 AutoCapture Component
3.2.2.1.5 3.1.2.1 AutoCapture Component
3.2.2.1.6 3.1.2.1 AutoCapture Component
3.2.2.1.7 3.1.2.1 AutoCapture Component
3.2.2.1.8 3.1.2.1 AutoCapture Component
3.2.2.1.8.1 3.1.2.1 AutoCapture Component
3.2.2.1.8.2 3.1.2.1 AutoCapture Component
3.2.2.1.9 3.1.2.1 AutoCapture Component
3.2.2.1.10 3.1.2.1 AutoCapture Component
3.2.2.1.10.1 3.1.2.1 AutoCapture Component
3.2.2.1.10.2 3.1.2.1 AutoCapture Component
3.2.2.1.10.3 3.1.2.1 AutoCapture Component
3.2.2.1.10.4 3.1.2.1 AutoCapture Component
3.2.2.1.10.5 3.1.2.1 AutoCapture Component
3.2.2.1.10.6 3.1.2.1 AutoCapture Component
3.2.2.1.10.7 3.1.2.1 AutoCapture Component
3.2.2.1.10.8 3.1.2.1 AutoCapture Component
3.2.2.1.11 3.1.2.1 AutoCapture Component
3.2.2.1.12 3.1.2.1 AutoCapture Component
3.2.2.1.13 3.1.2.1 AutoCapture Component
3.2.2.1.13.1 3.1.2.1 AutoCapture Component
3.2.2.1.13.2 3.1.2.1 AutoCapture Component
3.2.2.1.13.3 3.1.2.1 AutoCapture Component
3.2.2.1.14 3.1.2.1 AutoCapture Component
3.2.2.1.14.1 3.1.2.1 AutoCapture Component
3.2.2.1.14.2 3.1.2.1 AutoCapture Component
3.2.2.1.14.3 3.1.2.1 AutoCapture Component
3.2.2.2 n/a
3.2.2.2.1 3.1.2.2 Raw Data Capture Component

9/10/09 - 196 - DCS 104.4

SRS SDD Software Unit

3.2.2.2.1.1 3.1.2.2 Raw Data Capture Component
3.2.2.2.1.2 3.1.2.2 Raw Data Capture Component
3.2.2.2.2 3.1.2.2 Raw Data Capture Component
3.2.2.2.3 3.1.2.2 Raw Data Capture Component
3.2.2.2.4 3.1.2.2 Raw Data Capture Component
3.2.2.2.5 3.1.2.2 Raw Data Capture Component
3.2.2.2.5.1 3.1.2.2 Raw Data Capture Component
3.2.2.2.5.2 3.1.2.2 Raw Data Capture Component
3.2.2.2.5.3 3.1.2.2 Raw Data Capture Component
3.2.2.2.5.4 3.1.2.2 Raw Data Capture Component
3.2.2.2.5.5 3.1.2.2 Raw Data Capture Component
3.2.2.2.6 3.1.2.2 Raw Data Capture Component
3.2.2.2.7 3.1.2.2 Raw Data Capture Component
3.2.2.2.7.1 3.1.2.2 Raw Data Capture Component
3.2.2.2.7.2 3.1.2.2 Raw Data Capture Component
3.2.2.2.7.3 3.1.2.2 Raw Data Capture Component
3.2.2.2.7.4 3.1.2.2 Raw Data Capture Component
3.2.2.2.8 3.1.2.2 Raw Data Capture Component
3.2.2.2.9 3.1.2.2 Raw Data Capture Component
3.2.2.3 n/a
3.2.2.3.1 3.1.2.3 Transfer To Tape Component
3.2.2.3.2 3.1.2.3 Transfer To Tape Component
3.2.2.3.3 3.1.2.3 Transfer To Tape Component
3.2.2.3.4 3.1.2.3 Transfer To Tape Component
3.2.2.3.5 3.1.2.3 Transfer To Tape Component
3.2.2.3.6 3.1.2.3 Transfer To Tape Component
3.2.2.3.7 3.1.2.3 Transfer To Tape Component
3.2.2.3.8 3.1.2.3 Transfer To Tape Component
3.2.2.3.8.1 3.1.2.3 Transfer To Tape Component
3.2.2.3.8.2 3.1.2.3 Transfer To Tape Component
3.2.2.3.8.3 3.1.2.3 Transfer To Tape Component
3.2.2.3.8.4 3.1.2.3 Transfer To Tape Component
3.2.2.3.9 3.1.2.3 Transfer To Tape Component
3.2.2.3.10 3.1.2.3 Transfer To Tape Component
3.2.2.3.11 3.1.2.3 Transfer To Tape Component
3.2.2.3.12 3.1.2.3 Transfer To Tape Component
3.2.2.3.13 n/a
3.2.2.4 n/a
3.2.2.4.1 3.1.2.5 Delete Raw Files Component (CTS)
3.2.2.4.2 3.1.2.5 Delete Raw Files Component (CTS)
3.2.2.4.3 3.1.2.5 Delete Raw Files Component (CTS)
3.2.2.4.4 3.1.2.5 Delete Raw Files Component (CTS)
3.2.2.4.5 3.1.2.5 Delete Raw Files Component (CTS)
3.2.2.5 n/a

9/10/09 - 197 - DCS 104.4

SRS SDD Software Unit

3.2.2.5.1 3.1.2.6 Raw File Transfer Component (CTS)
3.2.2.5.2 3.1.2.6 Raw File Transfer Component (CTS)
3.2.2.5.3 3.1.2.6 Raw File Transfer Component (CTS)
3.2.2.5.4 3.1.2.6 Raw File Transfer Component (CTS)
3.2.2.5.5 3.1.2.6 Raw File Transfer Component (CTS)
3.2.2.5.6 n/a
3.2.2.6 n/a
3.2.2.6.1 n/a
3.2.2.7 n/a
3.2.2.7.1 3.1.2.7 Raw Data Transmit Component
3.3.1 n/a
3.3.1.1 n/a
3.3.1.1.1 n/a
3.3.1.2 n/a
3.3.1.3 n/a
3.3.1.3.1 n/a
3.3.1.4 n/a
3.3.1.5 n/a
3.3.1.6 n/a
3.3.1.7 n/a
3.3.1.8 n/a
3.3.1.9 n/a
3.3.2 n/a
3.3.2.1 n/a
3.3.2.1.1 3.1.2.2 Raw Data Capture Component
3.3.2.2 n/a
3.3.2.2.1 n/a
3.3.2.3 n/a
3.3.2.4 n/a
3.3.2.4.1 3.1.2.2 Raw Data Capture Component
3.3.2.5 n/a
3.3.2.5.1 3.1.2.3 Transfer To Tape Component
3.3.2.5.2 3.1.2.3 Transfer To Tape Component
3.3.2.5.3 3.1.2.3 Transfer To Tape Component
3.3.2.6 n/a
3.3.2.7 n/a
3.3.2.7.1 3.1.2.6 Raw File Transfer Component (CTS)
3.3.2.7.2 3.1.2.6 Raw File Transfer Component (CTS)
3.5.1 n/a
3.5.2 n/a
3.5.3 n/a
3.5.4 n/a
3.5.4.1 n/a
3.5.4.1.1 n/a

9/10/09 - 198 - DCS 104.4

SRS SDD Software Unit

3.5.4.1.2 n/a
3.5.4.1.3 n/a
3.5.4.1.4 n/a
3.5.4.2 n/a
3.5.4.2.1 n/a
3.5.5 n/a
3.5.5.1 n/a
3.5.5.1.1 3.1.2.2 Raw Data Capture Component
3.5.5.1.2 n/a
3.5.5.2 n/a
3.5.5.2.1 n/a
3.5.6 n/a
3.5.7 n/a
3.5.8 n/a
3.5.9 n/a
3.5.10 n/a
3.5.10.1 n/a
3.5.10.1.1 n/a
3.5.11 n/a
3.5.12 n/a
3.5.13 n/a
3.5.14 n/a

9/10/09 - 199 - DCS 104.4

Section 6 Notes

6.1 Raw Data File Queue
The raw data file queue will be first-in/first-out based on the scheduled start time

and priority. When accounting files are ingested all information is inserted into
table DCS_RAWFILE_ACCT and the ON_LINE_FLAG is set to 1. The
SCHEDULED_START_TIME and PRIORITY fields determine the next available
file in the queue (this is accomplished by mac_DDS polling function
Check_for_xfers). TRANSFER_ACCT records are also created to notify each
destination that the file is ready. The TRANSFER_ACCT and
DCS_RAWFILE_ACCT define the raw file queues.

Each mission will have multiple logical queues, one for each “logical” processing
system and one for each “logical” archive. By “logical”, each destination system
may have more than one node that can pull raw files from the same queue;
however, the file is only retrieved by one of the nodes and once pulled, the file is
marked (by that node) as successfully transferred. There is one
TRANSFER_ACCT record created for each logical destination.

During the polling, when a file transfer is completed (all destinations have set their
XFER_STATUS field to ‘SUCCESS’ and the file is still on-line) and there are no
other ‘READY’ files in the queue, the oldest “IN-QUEUE” file in the same logical
queue with the highest priority (lowest value) is set to “READY”.

9/10/09 - 200 - DCS 104.4

Figure 6-1 Raw Data Queue

DCS - Raw
Data

Transfer

Processing
System

Archiving
System

READY

Highest Priority
(lowest integer
value), ordered
oldest to newest

Lowest Priority
(highest integer
value), ordered
oldest to newest

READY

Highest Priority
(lowest integer
value), ordered
oldest to newest

Lowest Priority
(highest integer
value), ordered
oldest to newest

OPS-HOLD and
FAIL files.

OPS-HOLD and
FAIL files.

9/10/09 - 201 - DCS 104.4 201

Appendix A APPENDIXES

A DDS_OPS_DB Data Dictionary

A.1 MISSION_ACCT
Field Type Size Description Default Restrictions Populated

by
MISSION _ID VARCHAR2 5 Mission identification. N/A Primary key, privileged DDS
MISSION_NAME VARCHAR2 100 Name of mission/data (e.g. ‘Landsat

7 Validation’)
‘’ Not Null, privileged DDS

RAW_DATA_PATH VARCHAR2 512 DDS directory for mission/data raw
data.

‘/rawdata’ Not Null, privileged DDS

PRIORITY NUMBER 1 Default priority for the mission. 1 Not Null, privileged DDS
DATA_TYPE VARCHAR2 3 Data type identification (e.g. ‘VAL’) ‘NOM’ Primary key, privileged, foreign

key to DCS_DATATYPE_ACCT
DDS

BIT_RATE NUMBER 11 Nominal data rate in bits per second. N/A None DDS
CHANNEL CHAR 1 Capture device channel mask (e.g.

‘a’ for channel A, ‘b’ for B, ‘*’ for both)
‘*’ None DDS

TABLE 1: MISSION_ACCT

A.2 MISSION_STATION_ACCT
Field Type Size Description Default Restrictions Populated

by
MISSION _ID VARCHAR2 5 Foreign key for mission identification. N/A Primary key, privileged DDS
STATION_ID VARCHAR2 5 Identifier of ground station (e.g.

‘AGS’, ‘EDC’)
N/A’ Primary key, privileged DDS

DATA_TYPE VARCHAR2 3 Data type identification (e.g. ‘VAL’) ‘NOM’ Primary key, privileged, foreign
key to DCS_DATATYPE_ACCT

DDS

TABLE 2: MISSION_STATION_ACCT

A.3 DESTINATION_ACCT
Field Type Size Description Default Restrictions Populated

by
DEST_SYS_ID VARCHAR2 10 Primary key for destination system

identification (e.g. ‘LPS-NG’).
N/A Primary key, privileged DDS

DEST_NAME VARCHAR2 100 Name of destination (e.g. ‘Landsat 7
Processing System – Next
Generation’)

‘’ Not Null, privileged DDS

ARCHIVE_FLAG NUMBER 1 1=system permanently archives data 0 Not Null, privileged DDS
TABLE 3: DESTINATION_ACCT

9/10/09 - 202 - DCS 104.4 202

A.4 ROUTING_ACCT
Field Type Size Description Default Restrictions Populated

by
DEST_SYS_ID VARCHAR2 10 Foreign key for destination system

identification.
N/A Primary key, Foreign key to

DESTINATION_ACCT
DDS

MISSION _ID VARCHAR2 5 Foreign key for mission identification. N/A Primary key, Foreign key to
MISSION_ACCT

DDS

INITIAL_XFER_STATUS VARCHAR2 12 Initial value to use in when creating the
TRANSFER_ACCT.XFER_STATUS
(e.g. ‘IN-QUEUE’ for immediate
queuing or ‘HOLD-XXX’ to hold for
some external action).

N/A Not null. DDS

DATA_TYPE VARCHAR2 3 Data type identification (e.g. ‘VAL’) ‘NOM’ Primary key, privileged, foreign
key to DCS_DATATYPE_ACCT

DDS

TABLE 4: ROUTING_ACCT

A.5 CONTACT_SCHEDULES
Field Type Size Description Default Restrictions Populated

by
SCHEDULED_START_TIME DATE - Start time of scheduled live data capture. N/A Not null DDS
SCHEDULED_STOP_TIME DATE - End time of scheduled live data capture. N/A Not null DDS
MISSION _ID VARCHAR2 5 Foreign key for mission identification. N/A Foreign key to

MISSION_ACCT
DDS

PRIORITY NUMBER 1 Priority (data with greater priority values
are to be processed/archived ahead of
lesser priority values).

1 0 to 9, not null DDS

DATA_TYPE VARCHAR2 3 Data type identification (e.g. ‘VAL’) ‘NOM’ Primary key, privileged,
foreign key to
DCS_DATATYPE_ACCT

DDS

TABLE 5: CONTACT_SCHEDULES

9/10/09 - 203 - DCS 104.4 203

A.6 DCS_CAPTURE_ACCT
Field Type Size Description Default Restrictions Populated

by
CAPT_SYS_ID VARCHAR2 20 Primary key for capture system

identification.
N/A Primary key,

privileged
DDS

SOFTWARE_VER_NUM VARCHAR2 10 Version of CTS software. N/A not null DDS
ISOLATE_PROCESS NUMBER 1 1=capture process is to run on an isolated

processor, 0=run on shared processor.
1 0 or 1, not null DDS

SUSPEND_PROCESS NUMBER 1 1=suspend non-essential processes which
may interfere with capture, 0=don’t

1 0 or 1, not null DDS

IP_ADDRESS VARCHAR2 100 Internet protocol address of system for
FTP deliveries from the CTS.

‘’ Not null DDS

USER_NAME VARCHAR2 100 User name on capture system (for ftp
transfers to the CTS).

‘’ Not null DDS

PASSWORD VARCHAR2 100 Password on capture system (for ftp
transfers to the CTS).

‘’ Not null, password DDS

SCHEDULE_DIR VARCHAR2 512 Directory on capture system to place
support schedules (for ftp).

‘’ Not null DDS

PARAMETER_DIR VARCHAR2 512 Directory on capture system to place
capture parameters (for ftp).

‘’ Not null DDS

TRANSFER_OPTION VARCHAR2 10 Option for transferring captured files
(NONE=transfer disabled, FTP= ftp to
DDS, TAPE= copy to tape)

FTP Not null DDS

DELETE_RAW_FILE VARCHAR2 10 Option for deleting raw files after transfer
(NO=no delete, YES=delete).

1 Not null DDS

XFER_IDLE_TIME NUMBER 5 Amount of time needed before next
scheduled capture in order to transfer file
(ftp or tar).

0 Not null, 0-99999 DDS

MWD_NAME VARCHAR2 30 Name (or number) of MWD system
assigned to this CTS.

1 None DDS

TAPE_DRIVE VARCHAR2 50 Device pathname of assigned tape drive. N/a None DDS
TABLE 6: DCS_CAPTURE_ACCT

9/10/09 - 204 - DCS 104.4 204

A.7 CAPTURE_MISSION_ACCT
Field Type Size Description Default Restrictions Populated

by
CAPT_SYS_ID VARCHAR2 20 Foreign key for capture system

identification.
N/A Primary key, Foreign key to

DCS_CAPTURE_ACCT,
privileged

DDS

MISSION _ID VARCHAR2 5 Foreign key for mission identification. N/A Primary key, Foreign key to
MISSION_ACCT, privileged

DDS

DATA_TYPE VARCHAR2 3 Data type identification (e.g. ‘VAL’) ‘NOM’ Foreign key to
DCS_DATATYPE_ACCT

DDS

TABLE 7: CAPTURE_MISSION_ACCT

A.8 DCS_CONTACT_SCHED_FILES
Field Type Size Description Default Restrictions Populated

by
FILE_NAME VARCHAR2 512 Name of contact schedule file N/A not null DDS

TABLE 8: DCS_CONTACT_SCHED_FILES

9/10/09 - 205 - DCS 104.4 205

A.9 DCS_CONFIGURATION
Field Type Size Description Default Restrictions Populated

by
DCS_HW_STRING_ID VARCHAR2 30 Name of DDS (i.e. ‘DDS’) DDS not null DDS
SOFTWARE_VER_NUM VARCHAR2 10 Version of DDS software. N/A not null DDS
SCHEDULE_POLL NUMBER 3 Number of seconds between checks for

new contact schedules, 0=disable
10 not null DDS

TRANSFER_POLL NUMBER 3 Number of seconds between checks for
completed transfers to destinations,
0=disable.

10 not null DDS

DISK_SPACE_POLL NUMBER 3 Number of seconds between checks for
disk space exceeding a threshold.

10 not null DDS

DISK_SPACE_THRESH NUMBER 3 Percent of free disk space remaining to
activate automated cleanup.

50 not null, 0-100 DDS

DELETION_DELAY NUMBER 6 Number of seconds after last
successful transfer to wait before the
file is automatically deleted from on-line
storage.

0 0-999999 DDS

FTP_LOGIN_NAME VARCHAR2 20 FTP login name used by the CTS’s
when transferring raw files to the DDS.

n/a DDS

FTP_PASSWORD VARCHAR2 20 Password for FTP_LOGIN_NAME n/a not null, password DDS
FTP_RAWFILE_DIR VARCHAR2 40 FTP login directory used by the CTS’s

when transferring raw files to the DDS.
/u01/rawfil
e

not null DDS

TAPE_DRIVE VARCHAR2 50 Device pathname of assigned tape
drive.

N/a None DDS

TABLE 9: DCS_CONFIGURATION

Comment [bjp6]: This should be 512!!

9/10/09 - 206 - DCS 104.4 206

A.10 DCS_RAWFILE_ACCT
Field Type Size Description Default Restrictions Populated

by
CAPT_SYS_ID VARCHAR2 20 Foreign key for capture system identification.

Indicates which CTS captured the file.
N/A Foreign key to

DCS_CAPTURE_ACCT
DDS

CAPTURE_SOURCE VARCHAR2 5 Ground station channel identification delivering
data to capture system (source of capture).

‘’ Not null DDS

SCHEDULED_START_TIME DATE n/a Starting time of downlink from satellite. N/A Not null DDS
SCHEDULED_STOP_TIME DATE n/a Ending time of downlink from satellite. N/A DDS
ACTUAL_START_TIME DATE n/a Starting time of capture on CTS. N/A DDS
ACTUAL_STOP_TIME DATE n/a Ending time of capture on CTS. N/A DDS
RAW_DATA_FILE_NAME VARCHAR2 512 Filename of raw data file (excluding path). N/A Not null DDS
RECEIVED_DATA_VOL NUMBER 7,2 Number of megabytes received (actual number

of bytes received, should be same as
FILE_SIZE unless the disk fills up)

0 DDS

EXPECTED_DATA_VOL NUMBER 7,2 Number of megabytes expected (based on total
duration of capture, which is from minimum start
time to maximum stop time plus a ‘pad’).

0 DDS

SCHEDULED_DATA_VOL NUMBER 7,2 Number of megabytes scheduled (this should
always be the same as ‘expected’)

0 DDS

FILE_SIZE NUMBER Size of file in bytes. 0 Not null DDS
TRANSMISSION_RATE NUMBER 7,2 Number of megabytes per second during

capture (calculated from total capture duration).
0 DDS

ISOLATE_FLAG NUMBER 1 1=capture process was run on an isolated
processor, 0=it wasn’t

0 DDS

SUSPEND_FLAG NUMBER 1 1=non-essential processes suspended during
capture, 0=they weren’t

0 DDS

ON_LINE_FLAG NUMBER 1 1=the raw file is on-line (on disk) 0 Not null DDS
ORIGIN_STATION VARCHAR2 5 Ground station that received the data from the

satellite.
N/A Not null DDS

MISSION_ID VARCHAR2 5 Foreign key for mission identification. N/A Foreign key to
MISSION_ACCT,
privileged

DDS

PRIORITY NUMBER 1 Priority (data with greater priority values are to
be processed/archived ahead of lesser priority
values).

N/a 0 to 9, not null DDS

DATA_TYPE VARCHAR2 3 Data type identification (e.g. ‘VAL’) ‘NOM’ Foreign key to
DCS_DATATYPE_ACCT

DDS

TABLE 10: DCS_RAWFILE_ACCT

Comment [bjp7]: Need to change to bytes.

9/10/09 - 207 - DCS 104.4 207

A.11 TRANSFER_ACCT
Field Type Size Description Default Restrictions Populated

by
RAW_DATA_FILE_NAME VARCHAR2 512 Primary key, foreign key identifies raw data

file.
N/A Primary key, foreign

key to
DCS_RAWFILE_ACC

DDS

DEST_SYS_ID VARCHAR2 10 Primary key, foreign key for destination
system identification.

N/A Primary key, Foreign
key to
DESTINATION_ACCT

DDS

XFER_STATUS VARCHAR2 10 Status of transfer:
 READY = data is ready for transfer
 PROGRESS = transfer in progress
 SUCCESS = data transferred and verified
 FAIL-XXX = dest. failure code
 HOLD-XXX = file is on-hold.
 IN-QUEUE = file is in queue pending a

higher priority or older file (do not xfer).

N/A Not null, restricted to
one of the values
defined. Will be
initialized by DDS and
updated by the
destination system
defined by
DEST SYS ID.

DDS
Destination
Destination
Destination
DDS
DDS

STATUS_DATE DATE n/a Date/time of last XFER_STATUS update. system
time

not null. Will be
initialized by DDS and
updated by the
destination system
defined by
DEST_SYS_ID.

DDS /
Destination

TABLE 11: TRANSFER_ACCT

9/10/09 - 208 - DCS 104.4 208

A.12 TRANSFER_ACCT_ARCHIVE
Field Type Size Description Default Restrictions Populated

by
RAW_DATA_FILE_NAME VARCHAR2 512 Primary key, foreign key identifies raw data

file.
N/A Primary key, foreign

key to
DCS_RAWFILE_ACC

DDS

DEST_SYS_ID VARCHAR2 10 Primary key, foreign key for destination
system identification.

N/A Primary key, Foreign
key to
DESTINATION_ACCT

DDS

XFER_STATUS VARCHAR2 10 Status of transfer attempt:
 SUCCESS = data transferred and verified
 FAIL-XXXX = failure defined by dest.

N/A Not null. Will be copied
by DDS from the
TRANSFER_ACCT
table for a “resend”.

DDS

STATUS_DATE DATE n/a Date/time of last XFER_STATUS update. system
time

not null. Will be copied
by DDS.

DDS

TABLE 12: TRANSFER_ACCT_ARCHIVE

A.13 BACKUP_ACCT
Field Type Size Description Default Restrictions Populated

by
TAPE_ID VARCHAR2 15 Primary key, identifies an individual tape. N/A Primary key DDS
TAPE_POSITION NUMBER 2 Primary key, identifies file position on

tape.
N/A Primary key DDS

RAW_DATA_FILE_NAME VARCHAR2 512 Foreign key identifies raw data file. N/A Primary key, foreign
key to
DCS_RAWFILE_ACCT

DDS

BACKUP_DATE DATE n/a Date file was written to tape N/A not null DDS
TABLE 13: BACKUP_ACCT

A.14 TEMP_CTS_FILES
Field Type Size Description Default Restrictions Populated

by
RAW_DATA_FILE_NAME VARCHAR2 512 Foreign key identifies raw data file. N/A Primary key DDS
TRANSFERRED VARCHAR2 3 Flag indicating file has already been

transferred (derived from write permission
of file mode on CTS).

N/A Not null DDS

FILE_SIZE NUMBER Data file size in bytes N/A Not null DDS
TABLE 14: TEMP_CTS_FILES

9/10/09 - 209 - DCS 104.4 209

A.15 DCS_CAPT_CHAN_MAP
Field Type Size Description Default Restrictions Populated

by
CAPT_SYS_ID VARCHAR2 20 Foreign key identifies the capture system. N/A Not null DDS
CAPT_DEV_SLOT VARCHAR2 50 Unix file system path for the Myriad

Capture Device slot number.
N/A Not null DDS

CAPT_SRC_CHAN VARCHAR2 2 Capture Channel Id (or capture source) N/A Not null DDS
TABLE 15: DCS_CAPT_CHAN_MAP

9/10/09 - 210 - DCS 104.4

Appendix B Acronyms

Acronym Description

CSCI Computer Software Configuration Item

DBDD Database Design Description

SDS Software Design Description

SDP Software Development Plan

SRS Software Requirements Specification

9/10/09 - 211 - DCS 104.4

Referenced Documents

USGS, DCS-100, Data Capture System (DCS) System Requirements Document

(SRD), June 2000.

USGS, DCS-102, Data Capture System (DCS) Software Requirements Specification

(SRS), August 2000.

USGS, DB-101, Data Capture System (DCS) Database Analysis and Design, August

2000.

USGS, DCS-103, Data Capture System (DCS) to Destination Systems Interface Control

Document (ICD), January 2001.

USGS, GS-100, Operations Concept, April 2000

NASA/GSFC, 511-4ICD/0296, Landsat 7 Mission Operations Center (MOC) to Landsat

7 Ground Station (LGS) Interface Control Document, Revision 2, October 1997

NASA/GSFC, LPS-104, Memorandum of Understanding between the Landsat 7

Processing System (LPS) and the Landsat 7 Mission Operations Center (MOC),

June 1997

Myriad Logic, ML-1680-001, User's Manual for the SER-1680 PCI Serial ECL Interface

Board, Version 1.01, May 1998.

Myriad Logic, ML-1680-002, SGI Device Driver Manual for the SER-1680 PCI Serial

ECL Interface Board, Version 1.00, May 15, 1998.

Silicon Graphics, Inc., 007-2499-006, REACT Real-Time Programmer's Guide, 1998.

Silicon Graphics, Inc., ‘man pages’, Realtime man page.

Silicon Graphics, Inc., 007-2478-008, Topics in IRIX Programming, 1996-2000.

Silicon Graphics, Inc., 007-0911-160, IRIX Device Driver Programmer's Guide, 1996-2000.

http://techpubs.sgi.com/library/tpl/cgi-bin/browse.cgi?coll=0650&db=bks&cmd=toc&pth=/SGI_Developer/REACT_PG�
http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?coll=0650&db=man&fname=/usr/share/catman/p_man/cat5/scheduler.z�
http://techpubs.sgi.com/library/tpl/cgi-bin/browse.cgi?coll=0650&db=bks&cmd=toc&pth=/SGI_Developer/T_IRIX_Prog�
http://techpubs.sgi.com/library/tpl/cgi-bin/browse.cgi?coll=0650&db=bks&cmd=toc&pth=/SGI_Developer/DevDriver_PG�

9/10/09 - 212 - DCS 104.4

Silicon Graphics, Inc., IRT-4.1-6.5-S-SD-W, IRIX Real Time Programming, Student

Workbook, August 1999.

	Document Change Summary
	Table of Contents
	List of Figures
	List of Tables
	INTRODUCTION
	Identification
	System Overview
	Document Overview

	Design Considerations
	Assumptions and Dependencies
	General Constraints
	Conventions
	Methodology
	System Architecture
	Other Design Considerations

	Architectural Design
	CSCI components
	DCS Database Server (DDS)
	Database Component
	Table MISSION_ACCT
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Table DESTINATION_ACCT
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Table ROUTING_ACCT
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Table MISSION_STATION_ACCT
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Table CONTACT_SCHEDULES
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Table DCS_CAPTURE_ACCT
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Table CAPT_MISSION_ACCT
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Table DCS_RAWFILE_ACCT
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Table TRANSFER_ACCT
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Table BACKUP_ACCT
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Table DCS_CONTACT_SCHED_FILES
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Table DCS_CONFIGURATION
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Table TEMP_CTS_FILES
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Monitor and Control Component
	mac_DDS
	Purpose
	Development Status
	Resource Utilization
	Program Library

	mac_IngestContact
	Purpose
	Development Status
	Resource Utilization
	Program Library

	mac_GenSuptSchedule
	Purpose
	Development Status
	Resource Utilization
	Program Library

	mac_InsertFileNames
	Purpose
	Development Status
	Resource Utilization
	Program Library

	mac_SendSetup
	Purpose
	Development Status
	Resource Utilization
	Program Library

	mac_ManCapture
	Purpose
	Development Status
	Resource Utilization
	Program Library

	mac_GetCTSFileList
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Back-up Archive Component
	mac_BackupArchive
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Delete Raw Files Component (DDS)
	mac_DeleteRawFiles
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Restage from Tape Component
	mac_Restage
	Purpose
	Development Status
	Resource Utilization
	Program Library

	mac_UpdDCSAcct
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Journaling Component
	mac_JournalFileEntry
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Graphical User Interface Component
	mac_ui_DDS_main
	Purpose
	Development Status
	Resource Utilization
	Program Library

	mac_ui_edit_capt_parms
	Purpose
	Development Status
	Resource Utilization
	Program Library

	mac_ui_edit_cont_sched
	Purpose
	Development Status
	Resource Utilization
	Program Library

	mac_ui_gen_tape_label
	Purpose
	Development Status
	Resource Utilization
	Program Library

	mac_ui_ingest_cont_sched
	Purpose
	Development Status
	Resource Utilization
	Program Library

	mac_ui_manual_capt
	Purpose
	Development Status
	Resource Utilization
	Program Library

	mac_ui_start_copy_to_tape
	Purpose
	Development Status
	Resource Utilization
	Program Library

	mac_ui_start_restage
	Purpose
	Development Status
	Resource Utilization
	Program Library

	mac_ui_DDS_config
	Purpose
	Development Status
	Resource Utilization
	Program Library

	mac_ui_mission_config
	Purpose
	Development Status
	Resource Utilization
	Program Library

	mac_ui_dest_config
	Purpose
	Development Status
	Resource Utilization
	Program Library

	mac_ui_rawfile_details
	Purpose
	Development Status
	Resource Utilization
	Program Library

	mac_ui_xfer_history
	Purpose
	Development Status
	Resource Utilization
	Program Library

	mac_ui_trans_cts_file
	Purpose
	Development Status
	Resource Utilization
	Program Library

	mac_ui_init_tape
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Capture Transfer Subsystem (CTS)
	AutoCapture Component
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Raw Data Capture Component
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Transfer To Tape Component
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Generate Label Component
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Delete Raw Files Component (CTS)
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Raw File Transfer Component (CTS)
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Raw Data Transmit Component
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Journaling Component
	Moving Window Display (MWD) Formatter Component
	Purpose
	Development Status
	Resource Utilization
	Program Library

	Capture Transfer Display (CTD)

	Concept of execution
	Normal Raw Data Flow

	Interface design.
	Interface identification and diagrams.
	DDS to CTS Interface
	DDS to Destination Systems Interface
	MOC to DDS Interface
	RDC to MWD Formatter Interface
	CTS to CTD Interface

	DDS to CTS Interface
	Priority Assigned
	Type of Interface
	Characteristics of Data Elements
	CTS Setup Information
	Individual Data Elements
	Sources and Recipients

	Manual Capture Parameters
	Individual Data Elements
	Sources and Recipients

	CTS Support Schedule
	Individual Data Elements
	Sources and Recipients

	Raw Data
	Individual Data Elements
	Sources and Recipients

	Mission Information
	Individual Data Elements
	Sources and Recipients

	DCS to Destination Systems Interface
	MOC to DDS Interface
	Contact Schedule

	RDC to MWD Formatter Interface
	Priority Assigned
	Type of Interface
	Characteristics of Data Elements
	rdc_mwd_shm_ctl
	Individual Data Elements
	Sources and Recipients

	Shared Arrays
	Individual Data Elements
	Sources and Recipients

	CTS to CTD Interface
	Priority Assigned
	Type of Interface
	Characteristics of Data Elements
	MWD Commands
	Individual Data Elements
	Sources and Recipients

	CSCI Detailed Design
	DCS Database Server
	Database Component
	Monitor and Control Component
	mac_DDS
	Unit Design Decisions
	Constraints, Limitations, or Unusual Features
	Programming Language
	Procedural Commands
	Inputs, Outputs, and Other Data Elements
	Software Unit Logic
	Initiation
	Control
	Response
	Sequence of Operations
	Method of Sequence Control
	Logic and Input Conditions
	Data Transfer in and out Of Memory
	Discreet Inputs

	Exception and Error Handling
	Data Structure Charts
	Details of the Software Unit

	mac_IngestContact
	Unit Design Decisions
	Constraints, Limitations, or Unusual Features
	Programming Language
	Procedural Commands
	Inputs, Outputs, and Other Data Elements
	Software Unit Logic
	Initiation
	Control
	Response
	Sequence of Operations
	Method of Sequence Control
	Logic and Input Conditions
	Data Transfer in and out Of Memory
	Discreet Inputs

	Exception and Error Handling
	Data Structure Charts
	Details of the Software Unit

	mac_GenSuptSchedule
	Unit Design Decisions
	Constraints, Limitations, or Unusual Features
	Programming Language
	Procedural Commands
	Inputs, Outputs, and Other Data Elements
	Software Unit Logic
	Initiation
	Control
	Response
	Sequence of Operations
	Method of Sequence Control
	Logic and Input Conditions
	Data Transfer in and out Of Memory
	Discreet Inputs

	Exception and Error Handling
	Data Structure Charts
	Details of the Software Unit

	mac_InsertFileNames
	Unit Design Decisions
	Constraints, Limitations, or Unusual Features
	Programming Language
	Procedural Commands
	Inputs, Outputs, and Other Data Elements
	Software Unit Logic
	Initiation
	Control
	Response
	Sequence of Operations
	Method of Sequence Control
	Logic and Input Conditions
	Data Transfer in and out Of Memory
	Discreet Inputs

	Exception and Error Handling
	Data Structure Charts
	Details of the Software Unit

	mac_SendSetup
	Unit Design Decisions
	Constraints, Limitations, or Unusual Features
	Programming Language
	Procedural Commands
	Inputs, Outputs, and Other Data Elements
	Software Unit Logic
	Initiation
	Control
	Response
	Sequence of Operations
	Method of Sequence Control
	Logic and Input Conditions
	Data Transfer in and out Of Memory
	Discreet Inputs

	Exception and Error Handling
	Data Structure Charts
	Details of the Software Unit

	mac_ManCapture
	Unit Design Decisions
	Constraints, Limitations, or Unusual Features
	Programming Language
	Procedural Commands
	Inputs, Outputs, and Other Data Elements
	Software Unit Logic
	Initiation
	Control
	Response
	Sequence of Operations
	Method of Sequence Control
	Logic and Input Conditions
	Data Transfer in and out Of Memory
	Discreet Inputs

	Exception and Error Handling
	Data Structure Charts
	Details of the Software Unit

	Back-up Archive Component
	mac_BackupArchive
	Unit Design Decisions
	Constraints, Limitations, or Unusual Features
	Programming Language
	Procedural Commands
	Inputs, Outputs, and Other Data Elements
	Software Unit Logic
	Initiation
	Control
	Response
	Sequence of Operations
	Method of Sequence Control
	Logic and Input Conditions
	Data Transfer in and out Of Memory
	Discreet Inputs

	Exception and Error Handling
	Data Structure Charts
	Details of the Software Unit

	Delete Raw Files Component (DDS)
	mac_DeleteRawFiles
	Unit Design Decisions
	Constraints, Limitations, or Unusual Features
	Programming Language
	Procedural Commands
	Inputs, Outputs, and Other Data Elements
	Software Unit Logic
	Initiation
	Control
	Response
	Sequence of Operations
	Method of Sequence Control
	Logic and Input Conditions
	Data Transfer in and out Of Memory
	Discreet Inputs

	Exception and Error Handling
	Data Structure Charts
	Details of the Software Unit

	Restage from Tape Component
	mac_Restage
	Unit Design Decisions
	Constraints, Limitations, or Unusual Features
	Programming Language
	Procedural Commands
	Inputs, Outputs, and Other Data Elements
	Software Unit Logic
	Initiation
	Control
	Response
	Sequence of Operations
	Method of Sequence Control
	Logic and Input Conditions
	Data Transfer in and out Of Memory
	Discreet Inputs

	Exception and Error Handling
	Data Structure Charts
	Details of the Software Unit

	mac_UpdDCSAcct
	Unit Design Decisions
	Constraints, Limitations, or Unusual Features
	Programming Language
	Procedural Commands
	Inputs, Outputs, and Other Data Elements
	Software Unit Logic
	Initiation
	Control
	Response
	Sequence of Operations
	Method of Sequence Control
	Logic and Input Conditions
	Data Transfer in and out Of Memory
	Discreet Inputs

	Exception and Error Handling
	Data Structure Charts
	Details of the Software Unit

	Journaling Component
	mac_JournalFileEntry
	Unit Design Decisions
	Constraints, Limitations, or Unusual Features
	Programming Language
	Procedural Commands
	Inputs, Outputs, and Other Data Elements
	Software Unit Logic
	Initiation
	Control
	Response
	Sequence of Operations
	Method of Sequence Control
	Logic and Input Conditions
	Data Transfer in and out Of Memory
	Discreet Inputs

	Exception and Error Handling
	Data Structure Charts
	Details of the Software Unit

	Capture Transfer Subsystem
	AutoCapture Component
	rdc_AutoCapture
	Unit Design Decisions
	Constraints, Limitations, or Unusual Features
	Programming Language
	Procedural Commands
	Inputs, Outputs, and Other Data Elements
	Software Unit Logic
	Initiation
	Control
	Response
	Sequence of Operations
	Method of Sequence Control
	Logic and Input Conditions
	Data Transfer in and out Of Memory
	Discreet Inputs

	Exception and Error Handling
	Data Structure Charts
	Details of the Software Unit

	rdc_AutoTransfer
	Unit Design Decisions
	Constraints, Limitations, or Unusual Features
	Programming Language
	Procedural Commands
	Inputs, Outputs, and Other Data Elements
	Software Unit Logic
	Initiation
	Control
	Response
	Sequence of Operations
	Method of Sequence Control
	Logic and Input Conditions
	Data Transfer in and out Of Memory
	Discreet Inputs

	Exception and Error Handling
	Data Structure Charts
	Details of the Software Unit

	Raw Data Capture Component
	rdc_Capture
	Unit Design Decisions
	Constraints, Limitations, or Unusual Features
	Programming Language
	Procedural Commands
	Inputs, Outputs, and Other Data Elements
	Software Unit Logic
	Initiation
	Control
	Response
	Sequence of Operations
	Method of Sequence Control
	Logic and Input Conditions
	Data Transfer in and out Of Memory
	Discreet Inputs

	Exception and Error Handling
	Data Structure Charts
	Details of the Software Unit

	Transfer To Tape Component
	rdc_Save
	Unit Design Decisions
	Constraints, Limitations, or Unusual Features
	Programming Language
	Procedural Commands
	Inputs, Outputs, and Other Data Elements
	Software Unit Logic
	Initiation
	Control
	Response
	Sequence of Operations
	Method of Sequence Control
	Logic and Input Conditions
	Data Transfer in and out Of Memory
	Discreet Inputs

	Exception and Error Handling
	Data Structure Charts
	Details of the Software Unit

	rdc_GenStackedLabel
	Unit Design Decisions
	Constraints, Limitations, or Unusual Features
	Programming Language
	Procedural Commands
	Inputs, Outputs, and Other Data Elements
	Software Unit Logic
	Initiation
	Control
	Response
	Sequence of Operations
	Method of Sequence Control
	Logic and Input Conditions
	Data Transfer in and out Of Memory
	Discreet Inputs

	Exception and Error Handling
	Data Structure Charts
	Details of the Software Unit

	Delete Raw Files Component (CTS)
	rdc_Delete
	Unit Design Decisions
	Constraints, Limitations, or Unusual Features
	Programming Language
	Procedural Commands
	Inputs, Outputs, and Other Data Elements
	Software Unit Logic
	Initiation
	Control
	Response
	Sequence of Operations
	Method of Sequence Control
	Logic and Input Conditions
	Data Transfer in and out Of Memory
	Discreet Inputs

	Exception and Error Handling
	Data Structure Charts
	Details of the Software Unit

	Raw File Transfer Component (CTS)
	rdc_Transfer
	Unit Design Decisions
	Constraints, Limitations, or Unusual Features
	Programming Language
	Procedural Commands
	Inputs, Outputs, and Other Data Elements
	Software Unit Logic
	Initiation
	Control
	Response
	Sequence of Operations
	Method of Sequence Control
	Logic and Input Conditions
	Data Transfer in and out Of Memory
	Discreet Inputs

	Exception and Error Handling
	Data Structure Charts
	Details of the Software Unit

	Raw Data Transmit Component
	rdc_Transmit
	Unit Design Decisions
	Constraints, Limitations, or Unusual Features
	Programming Language
	Procedural Commands
	Inputs, Outputs, and Other Data Elements
	Software Unit Logic
	Initiation
	Control
	Response
	Sequence of Operations
	Method of Sequence Control
	Logic and Input Conditions
	Data Transfer in and out Of Memory
	Discreet Inputs

	Exception and Error Handling
	Data Structure Charts
	Details of the Software Unit

	Journaling Component

	MWD Formatter Component
	Purpose
	Subcomponent Design
	MWDFormatter
	Main Classes
	Modules
	Control
	FIFO
	MWD
	FSD
	Ingest
	RDCIngest

	Frame Sync
	Landsat 7 Frame Sync
	Landsat 4/5 TM Frame Sync

	Formatter
	L7 Formatter
	L5 Formatter

	Library Classes
	Initfile
	Log
	Thread
	Abstract Thread
	Gate
	Flag

	Sockets
	Strings
	Containers
	Time
	Timer
	Strutils

	Moving Window Display Component

	Requirements Traceability
	Notes
	Raw Data File Queue

	APPENDIXES
	DDS_OPS_DB Data Dictionary
	MISSION_ACCT
	MISSION_STATION_ACCT
	DESTINATION_ACCT
	ROUTING_ACCT
	CONTACT_SCHEDULES
	DCS_CAPTURE_ACCT
	CAPTURE_MISSION_ACCT
	DCS_CONTACT_SCHED_FILES
	DCS_CONFIGURATION
	DCS_RAWFILE_ACCT
	TRANSFER_ACCT
	TRANSFER_ACCT_ARCHIVE
	BACKUP_ACCT
	TEMP_CTS_FILES
	DCS_CAPT_CHAN_MAP

	Acronyms
	Referenced Documents

