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GENERAL ENSEMBLE BIOGEOCHEMICAL MODELING SYSTEM
(GEMS)
The General Ensemble Biogeochemical Modeling System (GEMS) (Liu, 2009; Liu et al., 2004c)
was developed to integrate well-established ecosystem biogeochemical models with various

spatial databases for the simulations of biogeochemical cycles over large areas. Figure 18.1
shows the overall structure of the GEMS. Some of the key components are described below.

Multiple Underlying Biogeochemical Models

To avoid biases from individual models and to quantify the uncertainty of model outputs,

GEMS simultaneously uses multiple site-scale biogeochemical models to simulate ecosystem

dynamics over time and space. Previous applications of GEMS (Liu, 2009; Liu et al., 2004a, b, c,
2008; Tan et al., 2005, 2010, 2009b; Zhao et al., 2009) included the application of theCENTURY

(Parton et al., 1994, 1987) and Erosion-Deposition-Carbon-Model (EDCM; see Liu et al.,

2003). We are in the process of incorporating more models into GEMS including a spreadsheet
model to account for carbon storage and greenhouse gas (GHG) emissions using the

In-situ

and

Census

Data

Land

Surface

Dynamics

Land cover and
disturbances

Ecosystem
Performance
(e.g., productivity)

Climate

Change

Scenarios

Land Use

Scenarios

Economic and
management
Scenarios

GEMS

Data Assimilation

Biogeochemical models
(e.g., EDCM,CENTURY,

BIOME-BGC)

Land cover/use
change model (e.g.,
FORE-SCE, CLUE)

IPCC, etc.

Soil data

Vegetation data
(FIA, USDA, etc)

Spatially distributed
characterization of ecosystem
states and changes (e.g., carbon
stocks and fluxes) with measure
of unclertainty under various
land use, management, and
climate change scenarios

Assessment (e.g., carbon
sequestration, risk, cost-benefit)

Reporting by land management
units, regions, and nation

Fluxnet data

FIGURE 18.1
Structure and major components of the General Ensemble Modeling System (GEMS)
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Intergovernmental Panel on Climate Change (IPCC) approach (IPCC, 2003), wetland
biogeochemical models, and other models such as DeNitrification-DeComposition model

(DNDC) (Li, 2000).

Monte Carlo Simulations

In addition to addressing model structure uncertainties using model ensemble, algorithms are

implemented in GEMS to address the transfer and impacts of input data uncertainty (Liu,
2009). Monte Carlo ensemble simulations of each simulation unit (one site/pixel or group of

sites/pixels with similar biophysical conditions) are used to incorporate the uncertainties and

variability (as measured by variances and covariance) of state and driving input variables.
Consequently, GEMS can provide uncertainty estimates of the predicted variables in time and

space.

Model Inputs: Management Practices and Others

GEMS is designed to upscale carbon stocks and fluxes from sites to regions with a spatially

explicit, dynamic consideration for land cover and land use change. Major driving variables
include land cover and land use, climate, soils, disturbances, and management history. GEMS

has the capability of modeling the impacts of land-surface disturbances and management

practices; these include land use and land cover change, fertilization, cultivation, fallow, crop
composition, crop rotation, manure addition, tillage practices, grazing, harvesting options (or

residue management), wildfire incidents, and hurricane events (Liu et al., 2008, 2004a, b, c;

Tan et al., 2005, 2009a, 2010; Zhao et al., 2009).

In general, channeling all management practices into biogeochemical modeling systems

over large areas is a critical challenge because of the complexity, diversity, and spatial and

temporal changes of management practices. In addition, most of the management practices
cannot be detected using remote sensing techniques; the only data available are agricultural

census data at the county, state, or resource management level (including NRI data). Stochastic
approaches have been implemented in GEMS to downscale census data to site/pixel level. For

example, if all crops are mapped into one category (i.e. cropland) as is often seen in land cover

maps, GEMS would use county-level crop composition data (fractions or probabilities of all
crops in a county) from an agricultural census to downscale the aggregated class cropland into

different crops. In addition, if the land cover maps are snapshots with a time interval longer

than one year, GEMS would create the missing annual land cover maps using crop rotation
probabilities, which can be obtained from agricultural census data or expert knowledge.

Additional examples can be found in Liu (2009).

Model Outputs

While different biogeochemical models in GEMS have different output variables, their

common output variables include gross and net primary productivity, autotrophic and

heterotrophic respiration, grain production, dynamics of carbon pools of vegetation and soils,
and methane (CH4) and nitrous oxide (N2O) fluxes for agricultural systems. At the regional

scale, outputs are in standardized file formats (e.g. network CommonData Form (NetCDF)) to

facilitate sharing, analysis, and visualization.

Data Assimilation

Several data assimilation approaches were applied with GEMS for two purposes: (1) to
understand and quantify the dynamics of model parameters, and (2) to detect model structure

deficiencies (Chen et al., 2008; Liu et al., 2008; Zhao et al., 2010). This capability becomes

useful when various observations are applied to calibrate the models at the site to regional
scales.
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Simulation of Agricultural Practices: EDCM as an Example

GEMS can drive a number of biogeochemical models to simulate carbon dynamics and GHG

emissions. It is beyond the scope of this chapter to discuss all the algorithms behind individual
models in GEMS because model formulations and algorithms are model specific and diverse.

Instead in this section, we concentrate on the description of the EDCM, the core, and the first

model that was coupled with GEMS.

NET PRIMARY PRODUCTION (NPP) AND IMPROVEMENTS IN CROP GENETICS
AND AGRONOMICS

Representing the net amount of carbon fixed through photosynthesis into an ecosystem, NPP

directly regulates the storage and rates of change of organic carbon in vegetation and soil. The
prediction of the spatial and temporal change of NPP is critical for the simulation of carbon

dynamics for a site or region.

The algorithms for NPP calculation follow the procedures that are well documented in the

literature (Metherell et al., 1993; Parton et al., 1993). Calculation algorithms for NPP use the

concept of potential primary productivity (PPP) and the limiting effects of moisture,
temperature, and nutrients (Liu et al., 2003). Accordingly, PPP is the optimal primary

productivity a system can reach without limitation from controlling variables; this is because

the limiting factors change over time, as does NPP.

Grain yield and harvest index have increased dramatically since the 1940s at different rates in

the U.S. for almost every crop (Hay, 1995), indicating that NPP of these crops must have

changed as well. To account for these changes, in addition to using the land use and land cover
change data (specifically crop rotation or transition), EDCM incorporates temporal changes in

grain yield and the harvest index of crops in simulations. These temporal change patterns were

derived from long-term U.S. agricultural census data, thereby allowing for improvements of
crop genetics and management practices to be represented in the model. Details of the

accounting formula and procedures can be found in Liu et al. (2003).

SOIL CARBON DYNAMICS

EDCM uses up to 10 soil layers to simulate the dynamics of soil organic carbon (SOC) in the
profile. The thickness of the surface soil layer is fixed at the plowing depth at 20 or 30 cm, while

the thicknesses of other layers are flexible. Five SOC pools (i.e. metabolic, structural, fast, slow,

and passive) in each soil layer are used in EDCM to characterize the quantity and quality of
SOC, which follows the practice used by the CENTURY model for the surface soil depth

(Metherell et al., 1993; Parton et al., 1987, 1993). The SOC dynamics in each of the layers were

simulated as a result of the interactions of the following processes: erosion or deposition, litter
input, decomposition, and leaching.

Litter Input: Harvesting and Residue Management

Plant residue input directly regulates net carbon flux into the soil and, therefore, the amount of

SOC storage. The amount of plant residue input varies over time and space, depending on
a variety of factors including NPP and harvesting practices. Higher NPP usually means higher

residue return to the soil for a given harvesting practice. In practice, the fraction of non-grain

biomass removed from the site has important implications to the maintenance of SOC and site
fertility. EDCM explicitly tracks the amount of biomass removed from the site as grain and

straw, and the amount returned to the soil using NPP, harvest index, and the allocation of
biomass in the crop (e.g. grain, aboveground, and belowground) (Liu et al., 2003).

In addition to litter input from the soil surface, soil receives litter input from root mortality in

the soil profile. EDCM uses species-specific rooting characteristics (e.g. rooting depth and root
vertical distribution) to track the growth and death of roots in each soil layer.
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Finally, the decomposition of plant residues is simulated following the CENTURY 4.0 model
according to residue quality indexes (e.g. C/N ratio and lignin content) and environmental

conditions of the soil (Metherell et al., 1993; Parton et al., 1993).

Soil Carbon Decomposition in Soil Profile

EDCM simulates the decomposition of SOC in each SOC pool in each layer, calculated by
using a pool-specific maximum decomposition rate, layer-specific soil moisture, soil temper-

ature, and soil aeration. The approach is consistent with the CENTURY 4.0 model (Metherell

et al., 1993; Parton et al., 1993; Paustian et al., 2012). The effects of soil texture on SOC
turnover and lignin content of structural material on SOC decomposition are also considered.

For the simulation of plant growth and SOC decomposition, it is necessary to predict the
temporal change of soil moisture in the soil profile. EDCM uses an innovative statistically

based approach to simulate the dynamics of soil moisture using monthly precipitation

observations, and has been tested successfully in dramatically different climate regions (Li,
2000; Liu et al., 2003).

Soil aeration has a strong impact on SOC decomposition (Li, 2000; Renault and Sierra, 1994;

Renault and Stengel, 1994). Several studies (Bouwman, 1989; Van Dam et al., 1997; Voroney
et al., 1981) indicate SOC decomposition in subsurface soil horizons is slower than can be

explained by soil moisture, temperature, and soil texture, which are usually sufficient for the
prediction of SOC dynamics in the surface layer. To our knowledge, no effective physically

based modeling approach for the dynamics of soil aeration has been proposed. In EDCM, we

hypothesize that soil aeration decreases with soil depth and we model its effect on decom-
position using an aeration factor analogous to other factors included in the CENTURYmodel’s

treatment of decomposition (Liu et al., 2003, 2010). This approach is based on the assumption

that the diffusion of oxygen to deep layers becomes increasingly difficult as depth increases.

Surface and internal drainage has been recognized as a major force driving SOC dynamics in

cropland (Baker et al., 2007). In general, poorly drained environments favor SOC accumu-

lation and well-drained environments enhance the soil organic matter decomposition and
C emissions (Tan et al., 2004). Improvement in the drainage conditions through an internal

tile drainage system within poorly drained soils (such as hydric soils, organic soils, and

peatland) can promote crop root development and increase crop biomass (both above and
below ground) and grain yields (Kanwar et al., 1988). Since the 1970s, a massive tile drainage

system was developed in the Corn Belt (e.g. Iowa, Illinois, Ohio, etc.) to convert native prairies

and other hydric soils to highly productive croplands. In order to evaluate the effect of tile
drainage on SOC budgets, Liu et al. (2010) added an empirical equation to the EDCM to define

drainage conditions at any depth in a soil profile in a tile-drained system.

IMPACTS OF SOIL EROSION AND DEPOSITION

Erosion and deposition of soil, carbon, and nutrients are important processes affecting carbon
balance and GHG emissions (Harden et al., 1999; Liu et al., 2003; McCarty and Ritchie, 2002;

Stallard, 1998; Van Oost et al., 2007). A suite of management practices and disturbances

impacts soil erosion and deposition. EDCM treats the impacts of soil erosion and deposition
on ecosystem productivity, SOC, and GHG fluxes in detail (Liu et al., 2003). It models the

evolution of the soil profile as it is altered by soil erosion and deposition processes. Soil

properties (e.g. soil texture and bulk density) and processes (e.g. moisture, temperature, and
SOC decomposition) are explicitly tracked or simulated in each layer.

CH4 AND N2O FLUXES

In EDCM, CH4 oxidation from agricultural systems is simulated according to the algorithms

presented in Del Grosso et al. (2012). Nitrous oxide emissions are simulated as a function of
fertilization rate, methods of fertilization, and N mineralization rate in the soil (Liu et al.,
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1999). The model uses the algorithm based on previous work by Cao et al. (1996) and Zhang
et al. (2002) and modified to fit in EDCM’s monthly step prediction. In wetland systems and

rice fields, flooding time and water depth are required inputs to calculate the CH4 emission.

Methane production is calculated as the function of temperature and carbon substrate in the
flooded soil.

STUDY AREAS AND MODELING DESIGN
Study Areas

NEBRASKA EDDY FLUX TOWER SITES

Three flux tower sites were used to calibrate and test the model at the plot scale through data
assimilation. The study sites are located at the University of Nebraska Agricultural Research

and Development Center near Mead, NE (Figure 18.2). One site (#1: 41�09054.200 N,

96�28035.900 W, 361m) is equipped with center pivot irrigation and was planted as continuous
corn (Zea mays L.). The second site (#2: 41�09053.500 N, 96�2802.300 W, 362m) is also equipped

with center pivot irrigation and was planted to a cornesoybean (Glycine max. L.) rotation. The

third site (#3: 41�10046.800 N, 96�26022.700 W, 362m) relies on rainfall and is planted in
cornesoybean rotation. Soil at the sites are deep silty clay loams, typical of eastern Nebraska,

consisting of four soil series: Yutan (fine-silty, mixed, superactive, mesic Mollic Hapludalfs),

FIGURE 18.2
Study area locations. Please see color plate section at the back of the book.
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Tomek (fine, smectitic, mesic Pachic Argialbolls), Filbert (fine, smectitic, mesic Vertic Argial-
bolls), and Filmore (fine, smectitic, mesic Vertic Argialbolls).

Prior to initiation of the study, these study sites had a variable cropping history. All three sites
were uniformly tilled by disking prior to initiation of the study in 2001 to homogenize the top

0.1 m of soil and incorporate fertilizers as well as previously accumulated surface residues. The

sites have been in no-till since 2001 (except Site 1, where conservation plow was used in the
autumn of 2005). Results from the first 4 years documented declining yields with continuous

irrigated maize (Site 1) because of difficulties in achieving uniform and adequate plant

population due to a heavy litter layer. To address these constraints conservation-plow opera-
tions were employed at Site 1, resulting in partial inversion of topsoil layers.

Fluxes of CO2, water vapor, and sensible heat were measured employing eddy covariance
systems at all three sites. Details of measurements and analyses of these fluxes and supporting

variables are provided in Verma et al. (2005).

REGIONAL APPLICATIONS: MISSISSIPPI VALLEY AND PRAIRIE POTHOLES

Three counties were selected as representative of the land cover change characteristics in the

three regions. Tensas Parish, LA, is located in the Mississippi Alluvial Plain (MAP, EPA Level III
Ecoregion 73), a roughly 14 million ha lowland valley shaped by the Mississippi River that

extends from southern Illinois to the Gulf of Mexico. Themeander belts, valley trains, and back

swamps are comprised of fine-textured and poorly drained clay and silt soils (EPA-Western
Ecology Division, 2010). Originally, the MAP was dominated by bottomland hardwood

forests, but flood control levees have reduced the natural historic floodplain to 10% of its

original extent (Mac et al., 1998). This facilitated the large-scale conversion of the original
forest to agricultural cropland, which now covers nearly 59% of the MAP (Faulkner et al.,

2011). In 2001, Tensas Parish land cover was primarily cropland (54%) followed by wetlands

(33%), forests (3%), and other (water, developed, etc., 10%) (Zhu et al., 2010). Nearly two-
thirds of the MAP is dominated by Sharkey or Tensas clay soils, with the remaining soils

consisting of silt loams or silty clay loams (USDA-NRCS, 2006).

Claiborne County, MS, is located in the Mississippi Valley Loess Plain (MVLP, EPA Level Three

Ecoregion 74). The MVLP lies adjacent to the eastern edge of the MAP, extending from western

Kentucky to Louisiana. It consists of bluff hills, loess plains, and southern rolling plains with
loess (wind-blown silt) soils. Vegetation is primarily upland forests dominated by oak

(Quercus), hickory (Carya), and southern yellow pine (Pinus) (EPA-Western Ecology Division,

2010). As of 2001, Claiborne County was dominated by forests (73%, consisting of 47%
deciduous, 6% evergreen, 9% mixed, and 11% anthropogenic disturbances), followed by

wetlands (10%) and croplands (10%, includes hay and pasture), and other land cover classes

(7%) (Zhu et al., 2010). All soils in the county are classified as silt loam (USDA-SCS, 1963).

A 256 km2 block in Stutsman County, North Dakota, was selected as an area for GEMS

applications in the Prairie Pothole Region of the United States (Figure 18.2). The study area is

characterized by a dynamic continental climate with a mean annual precipitation of
approximately 440mm (Carroll et al., 2005). Native vegetation within the study area was

mixed grass prairie. However, the landscape has been substantially altered, and the majority of

the prairie grasslands have been converted to agricultural croplands.

Modeling Design

In this study, GEMS was applied at two spatial scales to illustrate its capability in simulating the
consequences of various management practices on soil carbon dynamics and GHG emissions.

As an example, GEMS was used to model the impacts of crop rotation, fertilization, crop

residue management, irrigation, and tillage at the site scale (i.e. the Nebraska flux tower
cornesoybean rotation site). Table 18.1 lists the scenario setups for these simulations. GEMS
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was calibrated using the eddy flux measurements of carbon exchanges between the cropland

and the atmosphere, grain production, and other measurements before being applied to
simulate the carbon dynamics and GHG fluxes under various scenarios listed in Table 18.1. In

order to address the long-term impacts of management practices, our simulations ran from

2000 to 2050.

To illustrate the applicability of GEMS in incorporating high-resolution remotely sensed land

cover and land use change information at the regional scale, we applied the model at the
selected area in the Prairie Pothole region from 1972 to 2008. A land cover change database

from 2000 to 2008 was created based on the USDA Crop Data Layer derived from the Indian

Advanced Wide Field Sensor (AWiFS), which has a spatial resolution of 56m (USDA-National
Agricultural Statistics Service, 2011). It was assumed that there was no land cover change before

2000 because of lack of information.

In addition to illustrating the wide range of geographic areas suitable for GEMS application, we
also applied the model to the Mississippi Valley to simulate the potential of carbon seques-

tration and reduction of GHG emissions under future climate change and land use scenarios.

Annual land cover change scenarios (R: “reference land use, land cover, and land manage-
ment”; L: “enhanced land use and land cover with reference land management”) from 2001 to

2050 were predicted using the Forecasting Scenario (FORE-SCE) model (Sohl et al., 2007);

those results are presented in Zhu et al. (2010). Monthly climate data were from IPCC SRES
(Special Report on Emissions Scenarios) A2 scenario, which is at the higher end of the SRES

emissions scenarios characterized by high regional heterogeneity.

For both regional applications, soil information was from the national Soil Survey Geographic

(SSURGO) Database. Model simulations were constrained by grain yields for crops from the

USDA agricultural census data (USDA-National Agricultural Statistics Service, 2010) and forest
growth curves from the USDA Forest Service Forest Inventory and Analysis (FIA) (USDA-Forest

Service, 2010).

RESULTS
Impacts of Management Practices on SOC at Site Scale

Figure 18.3 shows the impacts of various management practices on SOC dynamics at the

cornesoybean rotation site in Nebraska. Apparently, all management activities affected SOC
dynamics but the impacts differed. Crop residue management was the most effective practice

affecting SOC dynamics directly. A 50% removal of the residue from the field would reduce

SOC by about 840 g Cm�2 (or 17.3%) in the 50-year simulation. Figure 18.3 shows that this
decrease will continue after 2050. Of course, the magnitude of the decrease depends on the

TABLE 18.1 Modeling Experiment Setup for Simulating Impacts of Management
Practices at the Nebraska Flux Tower Sites. Results are Presented in
Figure 18.3

Case
(see Figure 18.3)

Crop rotation
(yearly)

Cultivation
types

Harvest
types

Fertilization
(g N/m2)

Irrigation
(cm)

Base Cornesoybean CONVeCONV GeG 26e5 34e34
Cornecorn Cornecorn CONVeCONV GeG 26e5 34e34
Tillage Cornesoybean NTeNT GeG 26e5 34e34
Residue Cornesoybean CONVeCONV REDeRED 26e5 34e34
Fertilization Cornesoybean CONVeCONV GeG 15e0 34e34
Irrigation Cornesoybean CONVeCONV GeG 26e5 0e0

Note: CONV: conventional tillage. NT: no tillage.

G: 100% grain harvested, and other plant materials are left on site.

RED: 100% grain harvested, 50% aboveground non-grain biomass removed, and roots not removed.
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fraction of residue removed from the site. High removal rates would accelerate and increase the

reduction of SOC (Gollany et al., 2012).

Replacing cornesoybean rotation by continuous corn sequestered 371 g Cm�2 (or 7.7%) of

SOC during the 50-year simulation. Implementing no-till instead of the conventional tillage

would increase SOC by 148 g Cm�2 (or 3.1%). Irrigation and fertilization are important
practices for maintaining high SOC content as well. Without irrigation and fertilization, SOC

would decrease by 546 and 280 g Cm�2, respectively. Of course, those changes should be

interpreted with caution. First, the relative fast increases of SOC in the initial years might be
due to artifacts of improper initialization of the SOC pools. We did not spin-up (i.e. start the

model runs years earlier than the intended starting date of model simulations to make sure
that the model runs had enough time to stabilize and the states of the models were close to

reality at the starting date) the model runs because of the difficulties in prescribing the details

of management practices before the installation of the flux tower at the sites. Second, the
changes are very small if they are represented on the basis of total soil mass, and very difficult

to detect in the field. For example, replacing the cornesoybean rotation with continuous corn

resulted in a 7.7% increase in SOC, which is equivalent to the standard errors of the field
measurements of SOC (about 5 to 8%) (Verma et al., 2005). Therefore, given the challenges in

measuring small SOC change in the field, these modeling results do not conflict with field

observations of C neutrality at these sites (Verma et al., 2005).

Quantification of Regional Carbon Stocks and GHG Fluxes

PRAIRIE POTHOLE REGION

Figure 18.4 shows the simulated spatial details of SOC change in the study area of the Prairie
Pothole Region. On average, this system lost SOC at a rate of 5 g Cm�1 yr�1 from 1998 to

2007. However, the spatial variability of SOC change was high varying from strong sources

(<�60 g Cm�1 yr�1) to strong sinks (>60 g Cm�1 yr�1). Variability in SOC responses was
mainly caused by the spatial variability of management practices (e.g. crop rotation) and the

existing SOC storage. The C sources mainly occurred in cropping systems with high levels of

baseline SOC, which tend to be C sources following the conversion of grassland to cropland
(Bellamy et al., 2005; Liu et al., 2010; Tan et al., 2006a, b, 2007). Accordingly, land use change
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FIGURE 18.3
Soil carbon dynamics under various management practices. The scenarios are specified in Table 18.1. Please see color
plate section at the back of the book.
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was a major factor driving SOC dynamics. Planted areas for barley (Hordeum vulgare L.), spring
wheat (Triticum aestivum L.), and sunflower (Helianthus annuus L.) declined sharply from 1998

to 2007, while the areas of corn and soybean expanded from 0.5 to 13.5% and from 1.0 to

14.6%, respectively. In fact, the SOC loss rate in the region has become smaller since the mid-
1980s due mainly to an expansion of conservation tillage and restoration of grassland from

croplands in the last decade (Follett et al., 2009).

FIGURE 18.4
GEMS simulated changes in soil organic carbon in the 0e100 cm depth within the study area of the Prairie Pothole
region. Please see color plate section at the back of the book.

TABLE 18.2 GEMS Simulated Changes in Total Carbon Stock (Tg, terragram, or 1012 gram), and Cumulative
and Additional Carbon Sequestration in two counties (Tensas Parish, LA, and Claiborne County,
MS) of the Mississippi Valley, Calculated using the Specified Method, and using the “Reference
Land Use, Land cover, and Land Management” (R) and “Enhanced Land use and Land Cover with
Reference Land Management” (L) Scenarios. Values Represent the Amount at the End of the
Given Year in the Top 20 cm Layer

Year

Total carbon Stocks, by method,
in Tg1

Cumulative carbon sequestration,
by method, in Tg1

Additional carbon sequestration,
by method, in Tg2

GEMS-
spreadsheet

GEMS-
Century

GEMSe
EDCM

GEMS-
spreadsheet

GEMS-
Century

GEMSe
EDCM

GEMS-
spreadsheet

GEMS-
Century

GEMSe
EDCM

2001 40.91 34.22 43.30
2010 43.45 38.37 42.56 2.54 4.15 �0.74 0.30 0.47 0.02
2020 45.57 42.11 43.71 4.67 7.90 0.41 0.52 0.54 0.15
2030 47.32 45.88 45.24 6.41 11.66 1.94 0.90 0.95 0.39
2040 48.48 49.14 46.70 7.58 14.92 3.39 1.27 1.42 0.82
2050 49.36 51.89 48.07 8.45 17.67 4.76 1.64 1.75 1.08

1Values were evaluated using the “enhanced land use and land cover with reference land management” (L) scenario.
2Values represent the difference between the L scenario and the “reference land use and land cover and land management” (R) scenario.
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MISSISSIPPI VALLEY

Table 18.2 shows the dynamics of total carbon stocks as simulated by GEMS using GEMS-

spreadsheet, GEMS-Century, and GEMSeEDCM methods in the two counties in Mississippi

Valley. Note that the results presented for the Mississippi Valley included not only agricultural
lands but also forests, wetlands, and other land cover.

The initial conditions of carbon stocks in vegetation and soils were not synchronized among
these models. The purpose was to preserve the uncertainty and mimic the general observation

that different initial conditions are used by different modelers. Although the GEMS-Century

method began with a lower carbon stock value in 2001, it reached a higher carbon stock value
in 2050 than the other two models (GEMS-spreadsheet and EDCM) because of a higher

carbon-sequestration rate during the study period. From 2001 to 2050, the total carbon

sequestration (the net change in carbon stocks) calculated using the GEMS-CENTURY method
(17.67 Tg) was much higher than that calculated using the GEMS-Spreadsheet (8.45 Tg) and

GEMSeEDCM methods (4.77 Tg) (Table 18.2). The corresponding annual rates of carbon

sequestration were 0.35, 0.17, and 0.1 Tg C yr�1 from the GEMS-CENTURY, GEMS-Spread-
sheet, and GEMSeEDCM methods, respectively.

The differences shown here might be attributed to differences in the input data sources, initial
parameter values, and simulation algorithms of each model, especially between the GEMS-

CENTURY and GEMSeEDCM methods. For example, a higher rate of carbon sequestration

from the GEMS-CENTURY method might have been caused by the lower initial biomass
carbon values, faster biomass accumulation (compared to the GEMS-Spreadsheet method),

and SOC accumulation. In contrast, the lower carbon-sequestration estimate from the

GEMSeEDCM method can be attributed to lower biomass accumulation (compared to the
GEMS-Spreadsheet method) and SOC loss. Further study to reconcile the differences among

the modeling approaches within GEMS should be conducted.

All three methods estimated significantly higher ecosystem carbon stocks for the “enhanced
land use and land cover with reference land management” (L) scenario, indicating additional

carbon sequestration of 1.64, 1.75, and 1.08 Tg from the GEMS-Spreadsheet, GEMS-

CENTURY, and GEMSeEDCM methods, respectively, relative to the “reference land use, land
cover, and land management” (R) scenario. These amounts represented an additional 20%,

10%, and 23% increase, respectively, above the carbon-sequestration values calculated using

the R scenario (Table 18.2). The result suggests that these models, rather consistently, are
capable of quantifying additional carbon sequestration from enhanced changes in land use

and land cover activities such as the Wetland Reserve Program (NRCS, 2011), although their

initialization and performance on the absolute estimates of C stocks were quite different.

Table 18.3 listsmajor differences in CH4 andN2O emissions between the GEMS-spreadsheet and

GEMSeEDCMmethods (no results were generated from the GEMS-CENTURY method).
Table 18.3 revealed the following: (1) the GEMS-spreadsheet method estimated an annual

CH4-emission rate on wetlands more than double that of the GEMSeEDCMmethod; (2) esti-

mates of N2O emissions demonstrated opposite temporal trends, although both methods
produced similar N2O-emission rates; and (3) the GEMS-spreadsheet method showed small

increases in annual emission rates of CH4 andN2O, whereas the GEMSeEDCMmethod showed

decreasing trends. Field studies in this region suggested both CH4 and N2O emission rates were
greatly affected by soil moisture, temperature, and substrate availability, and thus varied

considerablydependingon site conditions. For example, CH4 emissions fromricepaddies ranged

from 2 to 1642 kg C ha�1 yr�1 (Lindau et al., 1990). The complexity of ecosystems and the
management practices in the region makes estimation of N2O and CH4 fluxes challenging.

Additional work is needed to address discrepancies among different modeling approaches. For

CH4 and N2O emissions, we found that uncertainty of the CH4 and N2O emission factors using
theGEMS-spreadsheetmethodwas very high. Reducing the uncertainty relies heavily on certainty

CHAPTER 18
The General Ensemble Biogeochemical Modeling System (GEMS)

319



of field observations of CH4 and N2O fluxes at the regional scale. At present, field observations

demonstrate a high uncertainty in GHG fluxes in the Mississippi Valley (Zhu et al., 2010).

DISCUSSION
Many site-level biogeochemical models have been developed and tested extensively over the

past three decades. With proper calibration and validation, they can be used to quantify the
impacts of various management practices on SOC and GHG fluxes in agricultural systems at

the field scale. We have demonstrated this capability for GEMSeEDCM at a site in Nebraska.

Although many site-scale models have been applied to regional and global studies, the
appropriateness and efficacy of such model extrapolation are not well addressed and tested in

the literature (Parton et al., 1994). For example, to our knowledge, few models have the

capability of systematically simulating the impacts of agricultural management practices over
large areas. GEMS incorporates information from different sources into the modeling

processes. In addition, the use of the model ensemble in GEMS makes it ideal to address

uncertainties in model structure, model parameters, and input data. Results from the Missis-
sippi Valley indicated that the differences among the models within GEMS (specifically the

biases and errors in the individual models) are significant in the estimation of carbon

dynamics and GHG fluxes. On the development or technical side of GEMS, procedures should
be put in place to address issues across models within GEMS such as consistent initialization

and automated schemes for constraining model simulations with observations from various

sources and different spatial and temporal scales. GEMS is the biogeochemical modeling
system for the U.S. Geological Survey’s assessment of national potentials for biological C

sequestration and reduction of CH4 and N2O emissions (Zhu et al., 2010). Existing algorithms

will be tested and improved and new algorithms will be added, if needed.

In addition to the challenges in model development, a major difficulty is obtaining information

about the multitude of agricultural practices that affect SOC and GHG fluxes (see Eagle et al.
(2010) for an exhaustive list of agricultural landmanagement practices). First, to our knowledge,

there is no common data repository for sharing agricultural management practice data, and each

project locates available data from various sources, collects, compiles, and uses it to prepare
agricultural practice inputs. For example, the Forest and Agricultural Sector Optimization

ModeldGreen House Gas version (FASOM-GHG) (Adams et al., 2005) has accomplished

national data compilations for various cropland mitigation strategies including changing crop
composition, rice acreage reduction, crop fertilizer rate reduction, crop tillage alteration,

TABLE 18.3 Annual Emission Rates of Methane and Nitrous Oxide (Gg, gigagram, or
109 gram) and their Total Differences (between 2001 and 2050), for the
“Reference Land use, Land cover, and Land Management” (R) and the
“Enhanced Land Use and Land Cover with Reference Land Management”
(L) Scenarios

CH4 from wetland (Gg C) N2O from all land (Gg N)

Year GEMS-spreadsheet GEMSeEDCM GEMS-spreadsheet GEMSeEDCM

L R L R L R L R

2001 28.47 28.42 15.50 15.47 2.74 2.74 2.77 2.76
2010 28.88 28.53 13.32 13.20 2.78 2.77 1.98 1.99
2020 29.26 28.36 12.66 12.45 2.82 2.76 1.91 1.92
2030 29.80 28.24 13.57 13.27 2.87 2.77 1.86 1.89
2040 30.43 28.10 13.04 12.65 2.92 2.77 1.74 1.77
2050 31.01 27.94 12.92 12.42 2.96 2.76 1.73 1.77
Difference 2.54 �0.48 �2.58 �3.05 0.22 0.02 �1.04 �0.99
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grassland conversion, and irrigated/dryland conversion for 63 U.S. production regions. Second,
subtle but important relationships among practice data are not captured. For example, USDA

Natural Resources Conservation Service (NRCS, 2002) observed that the Conservation Tech-

nology InformationCenter (CTIC) reported the area in various tillage systemsby individual crops
on an annual basis; however, it did not differentiate between long-term no-till practices versus

intermittent or “rotational no till” (e.g. tilled corneno-tilled soybean rotations). Third, there are
uncertainties inherent in survey-based data such as sampling design. Fourth, some agricultural

practices are not routinely monitored. For example, information about cover crop practices is

scattered. Finally, these problems are exacerbated across local, regional and global scales of
analysis. For example, the downscaling of agricultural practice projections from the Integrated

Model to Assess the Global Environment (IMAGE, 2006) is limited to crop composition and

fertilizer and manure use. These data challenges are opportunities to improve the analysis of
potential SOC and GHG fluxes in agricultural systems.
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